[48] | 1 | ;;----------------------------------------------------------------
|
---|
| 2 | ;; This package implements BASIC OPERATIONS ON MONOMIALS
|
---|
| 3 | ;;----------------------------------------------------------------
|
---|
| 4 | ;; DATA STRUCTURES: Monomials are represented as lists:
|
---|
| 5 | ;;
|
---|
| 6 | ;; monom: (n1 n2 ... nk) where ni are non-negative integers
|
---|
| 7 | ;;
|
---|
| 8 | ;; However, lists may be implemented as other sequence types,
|
---|
| 9 | ;; so the flexibility to change the representation should be
|
---|
| 10 | ;; maintained in the code to use general operations on sequences
|
---|
| 11 | ;; whenever possible. The optimization for the actual representation
|
---|
| 12 | ;; should be left to declarations and the compiler.
|
---|
| 13 | ;;----------------------------------------------------------------
|
---|
| 14 | ;; EXAMPLES: Suppose that variables are x and y. Then
|
---|
| 15 | ;;
|
---|
| 16 | ;; Monom x*y^2 ---> (1 2)
|
---|
| 17 | ;;
|
---|
| 18 | ;;----------------------------------------------------------------
|
---|
| 19 |
|
---|
| 20 | (deftype exponent ()
|
---|
| 21 | "Type of exponent in a monomial."
|
---|
| 22 | 'fixnum)
|
---|
| 23 |
|
---|
| 24 | (deftype monom (&optional dim)
|
---|
| 25 | "Type of monomial."
|
---|
| 26 | `(simple-array exponent (,dim)))
|
---|
| 27 |
|
---|
| 28 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 29 | ;;
|
---|
| 30 | ;; Construction of monomials
|
---|
| 31 | ;;
|
---|
| 32 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 33 |
|
---|
| 34 | (defmacro make-monom (dim &key (initial-contents nil initial-contents-supplied-p)
|
---|
| 35 | (initial-element 0 initial-element-supplied-p))
|
---|
| 36 | "Make a monomial with DIM variables. Additional argument
|
---|
| 37 | INITIAL-CONTENTS specifies the list of powers of the consecutive
|
---|
| 38 | variables. The alternative additional argument INITIAL-ELEMENT
|
---|
| 39 | specifies the common power for all variables."
|
---|
| 40 | ;;(declare (fixnum dim))
|
---|
| 41 | `(make-array ,dim
|
---|
| 42 | :element-type 'exponent
|
---|
| 43 | ,@(when initial-contents-supplied-p `(:initial-contents ,initial-contents))
|
---|
| 44 | ,@(when initial-element-supplied-p `(:initial-element ,initial-element))))
|
---|
| 45 |
|
---|
| 46 | |
---|
| 47 |
|
---|
| 48 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 49 | ;;
|
---|
| 50 | ;; Operations on monomials
|
---|
| 51 | ;;
|
---|
| 52 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 53 |
|
---|
| 54 | (defmacro monom-elt (m index)
|
---|
| 55 | "Return the power in the monomial M of variable number INDEX."
|
---|
| 56 | `(elt ,m ,index))
|
---|
| 57 |
|
---|
| 58 | (defun monom-dimension (m)
|
---|
| 59 | "Return the number of variables in the monomial M."
|
---|
| 60 | (length m))
|
---|
| 61 |
|
---|
| 62 | (defun monom-total-degree (m &optional (start 0) (end (length m)))
|
---|
| 63 | "Return the todal degree of a monomoal M. Optinally, a range
|
---|
| 64 | of variables may be specified with arguments START and END."
|
---|
| 65 | (declare (type monom m) (fixnum start end))
|
---|
| 66 | (reduce #'+ m :start start :end end))
|
---|
| 67 |
|
---|
| 68 | (defun monom-sugar (m &aux (start 0) (end (length m)))
|
---|
| 69 | "Return the sugar of a monomial M. Optinally, a range
|
---|
| 70 | of variables may be specified with arguments START and END."
|
---|
| 71 | (declare (type monom m) (fixnum start end))
|
---|
| 72 | (monom-total-degree m start end))
|
---|
| 73 |
|
---|
| 74 | (defun monom-div (m1 m2 &aux (result (copy-seq m1)))
|
---|
| 75 | "Divide monomial M1 by monomial M2."
|
---|
| 76 | (declare (type monom m1 m2 result))
|
---|
| 77 | (map-into result #'- m1 m2))
|
---|
| 78 |
|
---|
| 79 | (defun monom-mul (m1 m2 &aux (result (copy-seq m1)))
|
---|
| 80 | "Multiply monomial M1 by monomial M2."
|
---|
| 81 | (declare (type monom m1 m2 result))
|
---|
| 82 | (map-into result #'+ m1 m2))
|
---|
| 83 |
|
---|
| 84 | (defun monom-divides-p (m1 m2)
|
---|
| 85 | "Returns T if monomial M1 divides monomial M2, NIL otherwise."
|
---|
| 86 | (declare (type monom m1 m2))
|
---|
| 87 | (every #'<= m1 m2))
|
---|
| 88 |
|
---|
| 89 | (defun monom-divides-monom-lcm-p (m1 m2 m3)
|
---|
| 90 | "Returns T if monomial M1 divides MONOM-LCM(M2,M3), NIL otherwise."
|
---|
| 91 | (declare (type monom m1 m2 m3))
|
---|
| 92 | (every #'(lambda (x y z) (declare (type exponent x y z)) (<= x (max y z))) m1 m2 m3))
|
---|
| 93 |
|
---|
| 94 | (defun monom-lcm-divides-monom-lcm-p (m1 m2 m3 m4)
|
---|
| 95 | "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
|
---|
| 96 | (declare (type monom m1 m2 m3 m4))
|
---|
| 97 | (every #'(lambda (x y z w) (declare (type exponent x y z w)) (<= (max x y) (max z w))) m1 m2 m3 m4))
|
---|
| 98 |
|
---|
| 99 | (defun monom-lcm-equal-monom-lcm-p (m1 m2 m3 m4)
|
---|
| 100 | "Returns T if monomial MONOM-LCM(M1,M2) equals MONOM-LCM(M3,M4), NIL otherwise."
|
---|
| 101 | (declare (type monom m1 m2 m3 m4))
|
---|
| 102 | (every #'(lambda (x y z w) (declare (type exponent x y z w)) (= (max x y) (max z w))) m1 m2 m3 m4))
|
---|
| 103 |
|
---|
| 104 | (defun monom-divisible-by-p (m1 m2)
|
---|
| 105 | "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
|
---|
| 106 | (declare (type monom m1 m2))
|
---|
| 107 | (every #'>= m1 m2))
|
---|
| 108 |
|
---|
| 109 | (defun monom-rel-prime-p (m1 m2)
|
---|
| 110 | "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
|
---|
| 111 | (declare (type monom m1 m2))
|
---|
| 112 | (every #'(lambda (x y) (declare (type exponent x y)) (zerop (min x y))) m1 m2))
|
---|
| 113 |
|
---|
| 114 | (defun monom-equal-p (m1 m2)
|
---|
| 115 | "Returns T if two monomials M1 and M2 are equal."
|
---|
| 116 | (declare (type monom m1 m2))
|
---|
| 117 | (every #'= m1 m2))
|
---|
| 118 |
|
---|
| 119 | (defun monom-lcm (m1 m2 &aux (result (copy-seq m1)))
|
---|
| 120 | "Returns least common multiple of monomials M1 and M2."
|
---|
| 121 | (declare (type monom m1 m2))
|
---|
| 122 | (map-into result #'max m1 m2))
|
---|
| 123 |
|
---|
| 124 | (defun monom-gcd (m1 m2 &aux (result (copy-seq m1)))
|
---|
| 125 | "Returns greatest common divisor of monomials M1 and M2."
|
---|
| 126 | (declare (type monom m1 m2))
|
---|
| 127 | (map-into result #'min m1 m2))
|
---|
| 128 |
|
---|
| 129 | (defun monom-depends-p (m k)
|
---|
| 130 | "Return T if the monomial M depends on variable number K."
|
---|
| 131 | (declare (type monom m) (fixnum k))
|
---|
| 132 | (plusp (elt m k)))
|
---|
| 133 |
|
---|
| 134 | (defmacro monom-map (fun m &rest ml &aux (result `(copy-seq ,m)))
|
---|
| 135 | `(map-into ,result ,fun ,m ,@ml))
|
---|
| 136 |
|
---|
| 137 | (defmacro monom-append (m1 m2)
|
---|
| 138 | `(concatenate 'monom ,m1 ,m2))
|
---|
| 139 |
|
---|
| 140 | (defmacro monom-contract (k m)
|
---|
| 141 | `(subseq ,m ,k))
|
---|
| 142 |
|
---|
| 143 | (defun monom-exponents (m)
|
---|
| 144 | (declare (type monom m))
|
---|
| 145 | (coerce m 'list))
|
---|