| [81] | 1 | ;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- | 
|---|
|  | 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 3 | ;;; | 
|---|
|  | 4 | ;;;  Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu> | 
|---|
|  | 5 | ;;; | 
|---|
|  | 6 | ;;;  This program is free software; you can redistribute it and/or modify | 
|---|
|  | 7 | ;;;  it under the terms of the GNU General Public License as published by | 
|---|
|  | 8 | ;;;  the Free Software Foundation; either version 2 of the License, or | 
|---|
|  | 9 | ;;;  (at your option) any later version. | 
|---|
|  | 10 | ;;; | 
|---|
|  | 11 | ;;;  This program is distributed in the hope that it will be useful, | 
|---|
|  | 12 | ;;;  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
|  | 13 | ;;;  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
|  | 14 | ;;;  GNU General Public License for more details. | 
|---|
|  | 15 | ;;; | 
|---|
|  | 16 | ;;;  You should have received a copy of the GNU General Public License | 
|---|
|  | 17 | ;;;  along with this program; if not, write to the Free Software | 
|---|
|  | 18 | ;;;  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|---|
|  | 19 | ;;; | 
|---|
|  | 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 21 |  | 
|---|
| [418] | 22 | ;;---------------------------------------------------------------- | 
|---|
|  | 23 | ;; This package implements BASIC OPERATIONS ON MONOMIALS | 
|---|
|  | 24 | ;;---------------------------------------------------------------- | 
|---|
|  | 25 | ;; DATA STRUCTURES: Conceptually, monomials can be represented as lists: | 
|---|
|  | 26 | ;; | 
|---|
|  | 27 | ;;      monom:  (n1 n2 ... nk) where ni are non-negative integers | 
|---|
|  | 28 | ;; | 
|---|
|  | 29 | ;; However, lists may be implemented as other sequence types, | 
|---|
|  | 30 | ;; so the flexibility to change the representation should be | 
|---|
|  | 31 | ;; maintained in the code to use general operations on sequences | 
|---|
|  | 32 | ;; whenever possible. The optimization for the actual representation | 
|---|
|  | 33 | ;; should be left to declarations and the compiler. | 
|---|
|  | 34 | ;;---------------------------------------------------------------- | 
|---|
|  | 35 | ;; EXAMPLES: Suppose that variables are x and y. Then | 
|---|
|  | 36 | ;; | 
|---|
|  | 37 | ;;      Monom x*y^2 ---> #(1 2) | 
|---|
|  | 38 | ;; | 
|---|
|  | 39 | ;;---------------------------------------------------------------- | 
|---|
|  | 40 |  | 
|---|
| [394] | 41 | (defpackage "MONOMIAL" | 
|---|
| [395] | 42 | (:use :cl) | 
|---|
| [422] | 43 | (:export "MONOM" | 
|---|
| [423] | 44 | "EXPONENT" | 
|---|
| [422] | 45 | "MAKE-MONOM" | 
|---|
| [396] | 46 | "MONOM-ELT" | 
|---|
|  | 47 | "MONOM-DIMENSION" | 
|---|
|  | 48 | "MONOM-TOTAL-DEGREE" | 
|---|
|  | 49 | "MONOM-SUGAR" | 
|---|
|  | 50 | "MONOM-DIV" | 
|---|
|  | 51 | "MONOM-MUL" | 
|---|
|  | 52 | "MONOM-DIVIDES-P" | 
|---|
| [395] | 53 | "MONOM-DIVIDES-MONOM-LCM-P" | 
|---|
|  | 54 | "MONOM-LCM-DIVIDES-MONOM-LCM-P" | 
|---|
| [497] | 55 | "MONOM-LCM-EQUAL-MONOM-LCM-P" | 
|---|
| [395] | 56 | "MONOM-DIVISIBLE-BY-P" | 
|---|
|  | 57 | "MONOM-REL-PRIME-P" | 
|---|
|  | 58 | "MONOM-EQUAL-P" | 
|---|
|  | 59 | "MONOM-LCM" | 
|---|
|  | 60 | "MONOM-GCD" | 
|---|
|  | 61 | "MONOM-MAP" | 
|---|
|  | 62 | "MONOM-APPEND" | 
|---|
|  | 63 | "MONOM-CONTRACT" | 
|---|
|  | 64 | "MONOM-EXPONENTS")) | 
|---|
| [81] | 65 |  | 
|---|
| [419] | 66 | (in-package :monomial) | 
|---|
| [48] | 67 |  | 
|---|
|  | 68 | (deftype exponent () | 
|---|
|  | 69 | "Type of exponent in a monomial." | 
|---|
|  | 70 | 'fixnum) | 
|---|
|  | 71 |  | 
|---|
|  | 72 | (deftype monom (&optional dim) | 
|---|
|  | 73 | "Type of monomial." | 
|---|
|  | 74 | `(simple-array exponent (,dim))) | 
|---|
|  | 75 |  | 
|---|
|  | 76 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 77 | ;; | 
|---|
|  | 78 | ;; Construction of monomials | 
|---|
|  | 79 | ;; | 
|---|
|  | 80 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 81 |  | 
|---|
|  | 82 | (defmacro make-monom (dim &key (initial-contents nil initial-contents-supplied-p) | 
|---|
|  | 83 | (initial-element 0 initial-element-supplied-p)) | 
|---|
|  | 84 | "Make a monomial with DIM variables. Additional argument | 
|---|
|  | 85 | INITIAL-CONTENTS specifies the list of powers of the consecutive | 
|---|
|  | 86 | variables. The alternative additional argument INITIAL-ELEMENT | 
|---|
|  | 87 | specifies the common power for all variables." | 
|---|
|  | 88 | ;;(declare (fixnum dim)) | 
|---|
|  | 89 | `(make-array ,dim | 
|---|
|  | 90 | :element-type 'exponent | 
|---|
|  | 91 | ,@(when initial-contents-supplied-p `(:initial-contents ,initial-contents)) | 
|---|
|  | 92 | ,@(when initial-element-supplied-p `(:initial-element ,initial-element)))) | 
|---|
|  | 93 |  | 
|---|
| [392] | 94 |  | 
|---|
| [48] | 95 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 96 | ;; | 
|---|
|  | 97 | ;; Operations on monomials | 
|---|
|  | 98 | ;; | 
|---|
|  | 99 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 100 |  | 
|---|
|  | 101 | (defmacro monom-elt (m index) | 
|---|
|  | 102 | "Return the power in the monomial M of variable number INDEX." | 
|---|
|  | 103 | `(elt ,m ,index)) | 
|---|
|  | 104 |  | 
|---|
|  | 105 | (defun monom-dimension (m) | 
|---|
|  | 106 | "Return the number of variables in the monomial M." | 
|---|
|  | 107 | (length m)) | 
|---|
|  | 108 |  | 
|---|
|  | 109 | (defun monom-total-degree (m &optional (start 0) (end (length m))) | 
|---|
|  | 110 | "Return the todal degree of a monomoal M. Optinally, a range | 
|---|
|  | 111 | of variables may be specified with arguments START and END." | 
|---|
|  | 112 | (declare (type monom m) (fixnum start end)) | 
|---|
|  | 113 | (reduce #'+ m :start start :end end)) | 
|---|
|  | 114 |  | 
|---|
|  | 115 | (defun monom-sugar (m &aux (start 0) (end (length m))) | 
|---|
|  | 116 | "Return the sugar of a monomial M. Optinally, a range | 
|---|
|  | 117 | of variables may be specified with arguments START and END." | 
|---|
|  | 118 | (declare (type monom m) (fixnum start end)) | 
|---|
|  | 119 | (monom-total-degree m start end)) | 
|---|
|  | 120 |  | 
|---|
|  | 121 | (defun monom-div (m1 m2 &aux (result (copy-seq m1))) | 
|---|
|  | 122 | "Divide monomial M1 by monomial M2." | 
|---|
|  | 123 | (declare (type monom m1 m2 result)) | 
|---|
|  | 124 | (map-into result #'- m1 m2)) | 
|---|
|  | 125 |  | 
|---|
|  | 126 | (defun monom-mul (m1 m2  &aux (result (copy-seq m1))) | 
|---|
|  | 127 | "Multiply monomial M1 by monomial M2." | 
|---|
|  | 128 | (declare (type monom m1 m2 result)) | 
|---|
|  | 129 | (map-into result #'+ m1 m2)) | 
|---|
|  | 130 |  | 
|---|
|  | 131 | (defun monom-divides-p (m1 m2) | 
|---|
|  | 132 | "Returns T if monomial M1 divides monomial M2, NIL otherwise." | 
|---|
|  | 133 | (declare (type monom m1 m2)) | 
|---|
|  | 134 | (every #'<= m1 m2)) | 
|---|
|  | 135 |  | 
|---|
|  | 136 | (defun monom-divides-monom-lcm-p (m1 m2 m3) | 
|---|
|  | 137 | "Returns T if monomial M1 divides MONOM-LCM(M2,M3), NIL otherwise." | 
|---|
|  | 138 | (declare (type monom m1 m2 m3)) | 
|---|
|  | 139 | (every #'(lambda (x y z) (declare (type exponent x y z)) (<= x (max y z))) m1 m2 m3)) | 
|---|
|  | 140 |  | 
|---|
|  | 141 | (defun monom-lcm-divides-monom-lcm-p (m1 m2 m3 m4) | 
|---|
|  | 142 | "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise." | 
|---|
|  | 143 | (declare (type monom m1 m2 m3 m4)) | 
|---|
|  | 144 | (every #'(lambda (x y z w) (declare (type exponent x y z w)) (<= (max x y) (max z w))) m1 m2 m3 m4)) | 
|---|
|  | 145 |  | 
|---|
|  | 146 | (defun monom-lcm-equal-monom-lcm-p (m1 m2 m3 m4) | 
|---|
|  | 147 | "Returns T if monomial MONOM-LCM(M1,M2) equals MONOM-LCM(M3,M4), NIL otherwise." | 
|---|
|  | 148 | (declare (type monom m1 m2 m3 m4)) | 
|---|
|  | 149 | (every #'(lambda (x y z w) (declare (type exponent x y z w)) (= (max x y) (max z w))) m1 m2 m3 m4)) | 
|---|
|  | 150 |  | 
|---|
|  | 151 | (defun monom-divisible-by-p (m1 m2) | 
|---|
|  | 152 | "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise." | 
|---|
|  | 153 | (declare (type monom m1 m2)) | 
|---|
|  | 154 | (every #'>= m1 m2)) | 
|---|
|  | 155 |  | 
|---|
|  | 156 | (defun monom-rel-prime-p (m1 m2) | 
|---|
|  | 157 | "Returns T if two monomials M1 and M2 are relatively prime (disjoint)." | 
|---|
|  | 158 | (declare (type monom m1 m2)) | 
|---|
|  | 159 | (every #'(lambda (x y) (declare (type exponent x y)) (zerop (min x y))) m1 m2)) | 
|---|
|  | 160 |  | 
|---|
|  | 161 | (defun monom-equal-p (m1 m2) | 
|---|
|  | 162 | "Returns T if two monomials M1 and M2 are equal." | 
|---|
|  | 163 | (declare (type monom m1 m2)) | 
|---|
|  | 164 | (every #'= m1 m2)) | 
|---|
|  | 165 |  | 
|---|
|  | 166 | (defun monom-lcm (m1 m2 &aux (result (copy-seq m1))) | 
|---|
|  | 167 | "Returns least common multiple of monomials M1 and M2." | 
|---|
|  | 168 | (declare (type monom m1 m2)) | 
|---|
|  | 169 | (map-into result #'max m1 m2)) | 
|---|
|  | 170 |  | 
|---|
|  | 171 | (defun monom-gcd (m1 m2 &aux (result (copy-seq m1))) | 
|---|
|  | 172 | "Returns greatest common divisor of monomials M1 and M2." | 
|---|
|  | 173 | (declare (type monom m1 m2)) | 
|---|
|  | 174 | (map-into result #'min m1 m2)) | 
|---|
|  | 175 |  | 
|---|
|  | 176 | (defun monom-depends-p (m k) | 
|---|
|  | 177 | "Return T if the monomial M depends on variable number K." | 
|---|
|  | 178 | (declare (type monom m) (fixnum k)) | 
|---|
|  | 179 | (plusp (elt m k))) | 
|---|
|  | 180 |  | 
|---|
|  | 181 | (defmacro monom-map (fun m &rest ml &aux (result `(copy-seq ,m))) | 
|---|
|  | 182 | `(map-into ,result ,fun ,m ,@ml)) | 
|---|
|  | 183 |  | 
|---|
|  | 184 | (defmacro monom-append (m1 m2) | 
|---|
|  | 185 | `(concatenate 'monom ,m1 ,m2)) | 
|---|
|  | 186 |  | 
|---|
|  | 187 | (defmacro monom-contract (k m) | 
|---|
|  | 188 | `(subseq ,m ,k)) | 
|---|
|  | 189 |  | 
|---|
|  | 190 | (defun monom-exponents (m) | 
|---|
|  | 191 | (declare (type monom m)) | 
|---|
|  | 192 | (coerce m 'list)) | 
|---|