close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 3608

Last change on this file since 3608 was 3607, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 20.6 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "MONOM"
23 (:use :cl :copy)
24 (:export "MONOM"
25 "TERM"
26 "EXPONENT"
27 "MONOM-DIMENSION"
28 "MONOM-EXPONENTS"
29 "UNIVERSAL-EQUALP"
30 "MONOM-ELT"
31 "TOTAL-DEGREE"
32 "SUGAR"
33 "MULTIPLY-BY"
34 "DIVIDE-BY"
35 "DIVIDE"
36 "MULTIPLY-2"
37 "MULTIPLY"
38 "DIVIDES-P"
39 "DIVIDES-LCM-P"
40 "LCM-DIVIDES-LCM-P"
41 "LCM-EQUAL-LCM-P"
42 "DIVISIBLE-BY-P"
43 "REL-PRIME-P"
44 "UNIVERSAL-LCM"
45 "UNIVERSAL-GCD"
46 "DEPENDS-P"
47 "LEFT-TENSOR-PRODUCT-BY"
48 "RIGHT-TENSOR-PRODUCT-BY"
49 "LEFT-CONTRACT"
50 "MAKE-MONOM-VARIABLE"
51 "MONOM->LIST"
52 "LEX>"
53 "GRLEX>"
54 "REVLEX>"
55 "GREVLEX>"
56 "INVLEX>"
57 "REVERSE-MONOMIAL-ORDER"
58 "MAKE-ELIMINATION-ORDER-FACTORY"
59 "UNARY-MINUS")
60 (:documentation
61 "This package implements basic operations on monomials, including
62various monomial orders.
63
64DATA STRUCTURES: Conceptually, monomials can be represented as lists:
65
66 monom: (n1 n2 ... nk) where ni are non-negative integers
67
68However, lists may be implemented as other sequence types, so the
69flexibility to change the representation should be maintained in the
70code to use general operations on sequences whenever possible. The
71optimization for the actual representation should be left to
72declarations and the compiler.
73
74EXAMPLES: Suppose that variables are x and y. Then
75
76 Monom x*y^2 ---> (1 2) "))
77
78(in-package :monom)
79
80(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
81
82(deftype exponent ()
83 "Type of exponent in a monomial."
84 'fixnum)
85
86(defclass monom ()
87 ((exponents :initarg :exponents :accessor monom-exponents
88 :documentation "The powers of the variables."))
89 ;; default-initargs are not needed, they are handled by SHARED-INITIALIZE
90 ;;(:default-initargs :dimension 'foo :exponents 'bar :exponent 'baz)
91 (:documentation
92 "Implements a monomial, i.e. a product of powers
93of variables, like X*Y^2."))
94
95(defmethod print-object ((self monom) stream)
96 (print-unreadable-object (self stream :type t :identity t)
97 (with-accessors ((exponents monom-exponents))
98 self
99 (format stream "EXPONENTS=~A"
100 exponents))))
101
102(defmethod initialize-instance :after ((self monom)
103 &key
104 (dimension 0 dimension-supplied-p)
105 (exponents nil exponents-supplied-p)
106 (exponent 0)
107 &allow-other-keys
108 )
109 "The following INITIALIZE-INSTANCE method allows instance initialization
110of a MONOM in a style similar to MAKE-ARRAY, e.g.:
111
112 (MAKE-INSTANCE :EXPONENTS '(1 2 3)) --> #<MONOM EXPONENTS=#(1 2 3)>
113 (MAKE-INSTANCE :DIMENSION 3) --> #<MONOM EXPONENTS=#(0 0 0)>
114 (MAKE-INSTANCE :DIMENSION 3 :EXPONENT 7) --> #<MONOM EXPONENTS=#(7 7 7)>
115
116If both DIMENSION and EXPONENTS are supplied, they must be compatible,
117i.e. the length of EXPONENTS must be equal DIMENSION. If EXPONENTS
118is not supplied, a monom with repeated value EXPONENT is created.
119By default EXPONENT is 0, which results in a constant monomial.
120"
121 (cond
122 (exponents-supplied-p
123 (when (and dimension-supplied-p
124 (/= dimension (length exponents)))
125 (error "EXPONENTS (~A) must have supplied length DIMENSION (~A)"
126 exponents dimension))
127 (let ((dim (length exponents)))
128 (setf (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
129 (dimension-supplied-p
130 ;; when all exponents are to be identical
131 (setf (slot-value self 'exponents) (make-array (list dimension)
132 :initial-element exponent
133 :element-type 'exponent)))
134 (t
135 (error "Initarg DIMENSION or EXPONENTS must be supplied."))))
136
137(defgeneric monom-dimension (m)
138 (:method ((m monom))
139 (length (monom-exponents m))))
140
141(defgeneric universal-equalp (object1 object2)
142 (:documentation "Returns T iff OBJECT1 and OBJECT2 are equal.")
143 (:method ((object1 cons) (object2 cons)) (equalp object1 object2))
144 (:method ((m1 monom) (m2 monom))
145 "Returns T iff monomials M1 and M2 have identical EXPONENTS."
146 (equalp (monom-exponents m1) (monom-exponents m2))))
147
148(defgeneric monom-elt (m index)
149 (:documentation "Return the power in the monomial M of variable number INDEX.")
150 (:method ((m monom) index)
151 "Return the power in the monomial M of variable number INDEX."
152 (with-slots (exponents)
153 m
154 (elt exponents index))))
155
156(defgeneric (setf monom-elt) (new-value m index)
157 (:documentation "Set the power in the monomial M of variable number INDEX.")
158 (:method (new-value (m monom) index)
159 (with-slots (exponents)
160 m
161 (setf (elt exponents index) new-value))))
162
163(defgeneric total-degree (m &optional start end)
164 (:documentation "Return the total degree of a monomoal M. Optinally, a range
165of variables may be specified with arguments START and END.")
166 (:method ((m monom) &optional (start 0) (end (monom-dimension m)))
167 (declare (type fixnum start end))
168 (with-slots (exponents)
169 m
170 (reduce #'+ exponents :start start :end end))))
171
172(defgeneric sugar (m &optional start end)
173 (:documentation "Return the sugar of a monomial M. Optinally, a range
174of variables may be specified with arguments START and END.")
175 (:method ((m monom) &optional (start 0) (end (monom-dimension m)))
176 (declare (type fixnum start end))
177 (total-degree m start end)))
178
179(defgeneric multiply-by (self other)
180 (:documentation "Multiply SELF by OTHER, return SELF.")
181 (:method ((self monom) (other monom))
182 (with-slots ((exponents1 exponents))
183 self
184 (with-slots ((exponents2 exponents))
185 other
186 (unless (= (length exponents1) (length exponents2))
187 (error "Incompatible dimensions"))
188 (map-into exponents1 #'+ exponents1 exponents2)))
189 self))
190
191(defgeneric divide-by (self other)
192 (:documentation "Divide SELF by OTHER, return SELF.")
193 (:method ((self monom) (other monom))
194 (with-slots ((exponents1 exponents))
195 self
196 (with-slots ((exponents2 exponents))
197 other
198 (unless (= (length exponents1) (length exponents2))
199 (error "divide-by: Incompatible dimensions."))
200 (unless (every #'>= exponents1 exponents2)
201 (error "divide-by: Negative power would result."))
202 (map-into exponents1 #'- exponents1 exponents2)))
203 self))
204
205(defmethod copy-instance :around ((object monom) &rest initargs &key &allow-other-keys)
206 "An :AROUND method of COPY-INSTANCE. It replaces
207exponents with a fresh copy of the sequence."
208 (declare (ignore object initargs))
209 (let ((copy (call-next-method)))
210 (setf (monom-exponents copy) (copy-seq (monom-exponents copy)))
211 copy))
212
213(defun multiply-2 (object1 object2)
214 "Multiply OBJECT1 by OBJECT2"
215 (multiply-by (copy-instance object1) (copy-instance object2)))
216
217(defun multiply (&rest factors)
218 "Non-destructively multiply list FACTORS."
219 (reduce #'multiply-2 factors))
220
221(defun divide (numerator &rest denominators)
222 "Non-destructively divide object NUMERATOR by product of DENOMINATORS."
223 (divide-by (copy-instance numerator) (multiply denominators)))
224
225(defgeneric divides-p (object1 object2)
226 (:documentation "Returns T if OBJECT1 divides OBJECT2.")
227 (:method ((m1 monom) (m2 monom))
228 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
229 (with-slots ((exponents1 exponents))
230 m1
231 (with-slots ((exponents2 exponents))
232 m2
233 (every #'<= exponents1 exponents2)))))
234
235(defgeneric divides-lcm-p (object1 object2 object3)
236 (:documentation "Returns T if OBJECT1 divides LCM(OBJECT2,OBJECT3), NIL otherwise.")
237 (:method ((m1 monom) (m2 monom) (m3 monom))
238 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
239 (with-slots ((exponents1 exponents))
240 m1
241 (with-slots ((exponents2 exponents))
242 m2
243 (with-slots ((exponents3 exponents))
244 m3
245 (every #'(lambda (x y z) (<= x (max y z)))
246 exponents1 exponents2 exponents3))))))
247
248(defgeneric lcm-divides-lcm-p (object1 object2 object3 object4)
249 (:method ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
250 "Returns T if monomial LCM(M1,M2) divides LCM(M3,M4), NIL otherwise."
251 (with-slots ((exponents1 exponents))
252 m1
253 (with-slots ((exponents2 exponents))
254 m2
255 (with-slots ((exponents3 exponents))
256 m3
257 (with-slots ((exponents4 exponents))
258 m4
259 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
260 exponents1 exponents2 exponents3 exponents4)))))))
261
262(defgeneric monom-lcm-equal-lcm-p (object1 object2 object3 object4)
263 (:method ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
264 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
265 (with-slots ((exponents1 exponents))
266 m1
267 (with-slots ((exponents2 exponents))
268 m2
269 (with-slots ((exponents3 exponents))
270 m3
271 (with-slots ((exponents4 exponents))
272 m4
273 (every
274 #'(lambda (x y z w) (= (max x y) (max z w)))
275 exponents1 exponents2 exponents3 exponents4)))))))
276
277(defgeneric divisible-by-p (object1 object2)
278 (:documentation "Return T if OBJECT1 is divisible by OBJECT2.")
279 (:method ((m1 monom) (m2 monom))
280 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
281 (with-slots ((exponents1 exponents))
282 m1
283 (with-slots ((exponents2 exponents))
284 m2
285 (every #'>= exponents1 exponents2)))))
286
287(defgeneric rel-prime-p (object1 object2)
288 (:documentation "Returns T if objects OBJECT1 and OBJECT2 are relatively prime.")
289 (:method ((m1 monom) (m2 monom))
290 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
291 (with-slots ((exponents1 exponents))
292 m1
293 (with-slots ((exponents2 exponents))
294 m2
295 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2)))))
296
297(defgeneric universal-lcm (object1 object2)
298 (:documentation "Returns the multiple of objects OBJECT1 and OBJECT2.")
299 (:method ((m1 monom) (m2 monom))
300 "Returns least common multiple of monomials M1 and M2."
301 (with-slots ((exponents1 exponents))
302 m1
303 (with-slots ((exponents2 exponents))
304 m2
305 (let* ((exponents (copy-seq exponents1)))
306 (map-into exponents #'max exponents1 exponents2)
307 (make-instance 'monom :exponents exponents))))))
308
309
310(defgeneric universal-gcd (object1 object2)
311 (:documentation "Returns GCD of objects OBJECT1 and OBJECT2")
312 (:method ((m1 monom) (m2 monom))
313 "Returns greatest common divisor of monomials M1 and M2."
314 (with-slots ((exponents1 exponents))
315 m1
316 (with-slots ((exponents2 exponents))
317 m2
318 (let* ((exponents (copy-seq exponents1)))
319 (map-into exponents #'min exponents1 exponents2)
320 (make-instance 'monom :exponents exponents))))))
321
322(defgeneric depends-p (object k)
323 (:documentation "Returns T iff object OBJECT depends on variable K.")
324 (:method ((m monom) k)
325 "Return T if the monomial M depends on variable number K."
326 (declare (type fixnum k))
327 (with-slots (exponents)
328 m
329 (plusp (elt exponents k)))))
330
331(defgeneric left-tensor-product-by (self other)
332 (:documentation "Returns a tensor product SELF by OTHER, stored into
333 SELF. Return SELF.")
334 (:method ((self monom) (other monom))
335 (with-slots ((exponents1 exponents))
336 self
337 (with-slots ((exponents2 exponents))
338 other
339 (setf exponents1 (concatenate 'vector exponents2 exponents1))))
340 self))
341
342(defgeneric right-tensor-product-by (self other)
343 (:documentation "Returns a tensor product of OTHER by SELF, stored
344 into SELF. Returns SELF.")
345 (:method ((self monom) (other monom))
346 (with-slots ((exponents1 exponents))
347 self
348 (with-slots ((exponents2 exponents))
349 other
350 (setf exponents1 (concatenate 'vector exponents1 exponents2))))
351 self))
352
353(defgeneric left-contract (self k)
354 (:documentation "Drop the first K variables in object SELF.")
355 (:method ((self monom) k)
356 "Drop the first K variables in monomial M."
357 (declare (fixnum k))
358 (with-slots (exponents)
359 self
360 (setf exponents (subseq exponents k)))
361 self))
362
363(defun make-monom-variable (nvars pos &optional (power 1)
364 &aux (m (make-instance 'monom :dimension nvars)))
365 "Construct a monomial in the polynomial ring
366RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
367which represents a single variable. It assumes number of variables
368NVARS and the variable is at position POS. Optionally, the variable
369may appear raised to power POWER. "
370 (declare (type fixnum nvars pos power) (type monom m))
371 (with-slots (exponents)
372 m
373 (setf (elt exponents pos) power)
374 m))
375
376(defgeneric ->list (object)
377 (:method ((m monom))
378 "A human-readable representation of a monomial M as a list of exponents."
379 (coerce (monom-exponents m) 'list)))
380
381;; pure lexicographic
382(defgeneric lex> (p q &optional start end)
383 (:documentation "Return T if P>Q with respect to lexicographic
384order, otherwise NIL. The second returned value is T if P=Q,
385otherwise it is NIL.")
386 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
387 (declare (type fixnum start end))
388 (do ((i start (1+ i)))
389 ((>= i end) (values nil t))
390 (cond
391 ((> (monom-elt p i) (monom-elt q i))
392 (return-from lex> (values t nil)))
393 ((< (monom-elt p i) (monom-elt q i))
394 (return-from lex> (values nil nil)))))))
395
396;; total degree order, ties broken by lexicographic
397(defgeneric grlex> (p q &optional start end)
398 (:documentation "Return T if P>Q with respect to graded
399lexicographic order, otherwise NIL. The second returned value is T if
400P=Q, otherwise it is NIL.")
401 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
402 (declare (type monom p q) (type fixnum start end))
403 (let ((d1 (total-degree p start end))
404 (d2 (total-degree q start end)))
405 (declare (type fixnum d1 d2))
406 (cond
407 ((> d1 d2) (values t nil))
408 ((< d1 d2) (values nil nil))
409 (t
410 (lex> p q start end))))))
411
412;; reverse lexicographic
413(defgeneric revlex> (p q &optional start end)
414 (:documentation "Return T if P>Q with respect to reverse
415lexicographic order, NIL otherwise. The second returned value is T if
416P=Q, otherwise it is NIL. This is not and admissible monomial order
417because some sets do not have a minimal element. This order is useful
418in constructing other orders.")
419 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
420 (declare (type fixnum start end))
421 (do ((i (1- end) (1- i)))
422 ((< i start) (values nil t))
423 (declare (type fixnum i))
424 (cond
425 ((< (monom-elt p i) (monom-elt q i))
426 (return-from revlex> (values t nil)))
427 ((> (monom-elt p i) (monom-elt q i))
428 (return-from revlex> (values nil nil)))))))
429
430
431;; total degree, ties broken by reverse lexicographic
432(defgeneric grevlex> (p q &optional start end)
433 (:documentation "Return T if P>Q with respect to graded reverse
434lexicographic order, NIL otherwise. The second returned value is T if
435P=Q, otherwise it is NIL.")
436 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
437 (declare (type fixnum start end))
438 (let ((d1 (total-degree p start end))
439 (d2 (total-degree q start end)))
440 (declare (type fixnum d1 d2))
441 (cond
442 ((> d1 d2) (values t nil))
443 ((< d1 d2) (values nil nil))
444 (t
445 (revlex> p q start end))))))
446
447(defgeneric invlex> (p q &optional start end)
448 (:documentation "Return T if P>Q with respect to inverse
449lexicographic order, NIL otherwise The second returned value is T if
450P=Q, otherwise it is NIL.")
451 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
452 (declare (type fixnum start end))
453 (do ((i (1- end) (1- i)))
454 ((< i start) (values nil t))
455 (declare (type fixnum i))
456 (cond
457 ((> (monom-elt p i) (monom-elt q i))
458 (return-from invlex> (values t nil)))
459 ((< (monom-elt p i) (monom-elt q i))
460 (return-from invlex> (values nil nil)))))))
461
462(defun reverse-monomial-order (order)
463 "Create the inverse monomial order to the given monomial order ORDER."
464 #'(lambda (p q &optional (start 0) (end (monom-dimension q)))
465 (declare (type monom p q) (type fixnum start end))
466 (funcall order q p start end)))
467
468;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
469;;
470;; Order making functions
471;;
472;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
473
474;; This returns a closure with the same signature
475;; as all orders such as #'LEX>.
476(defun make-elimination-order-factory-1 (&optional (secondary-elimination-order #'lex>))
477 "It constructs an elimination order used for the 1-st elimination ideal,
478i.e. for eliminating the first variable. Thus, the order compares the degrees of the
479first variable in P and Q first, with ties broken by SECONDARY-ELIMINATION-ORDER."
480 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
481 (declare (type monom p q) (type fixnum start end))
482 (cond
483 ((> (monom-elt p start) (monom-elt q start))
484 (values t nil))
485 ((< (monom-elt p start) (monom-elt q start))
486 (values nil nil))
487 (t
488 (funcall secondary-elimination-order p q (1+ start) end)))))
489
490;; This returns a closure which is called with an integer argument.
491;; The result is *another closure* with the same signature as all
492;; orders such as #'LEX>.
493(defun make-elimination-order-factory (&optional
494 (primary-elimination-order #'lex>)
495 (secondary-elimination-order #'lex>))
496 "Return a function with a single integer argument K. This should be
497the number of initial K variables X[0],X[1],...,X[K-1], which precede
498remaining variables. The call to the closure creates a predicate
499which compares monomials according to the K-th elimination order. The
500monomial orders PRIMARY-ELIMINATION-ORDER and
501SECONDARY-ELIMINATION-ORDER are used to compare the first K and the
502remaining variables, respectively, with ties broken by lexicographical
503order. That is, if PRIMARY-ELIMINATION-ORDER yields (VALUES NIL T),
504which indicates that the first K variables appear with identical
505powers, then the result is that of a call to
506SECONDARY-ELIMINATION-ORDER applied to the remaining variables
507X[K],X[K+1],..."
508 #'(lambda (k)
509 (cond
510 ((<= k 0)
511 (error "K must be at least 1"))
512 ((= k 1)
513 (make-elimination-order-factory-1 secondary-elimination-order))
514 (t
515 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
516 (declare (type monom p q) (type fixnum start end))
517 (multiple-value-bind (primary equal)
518 (funcall primary-elimination-order p q start k)
519 (if equal
520 (funcall secondary-elimination-order p q k end)
521 (values primary nil))))))))
522
523(defclass term (monom)
524 ((coeff :initarg :coeff :accessor term-coeff))
525 (:default-initargs :coeff nil)
526 (:documentation "Implements a term, i.e. a product of a scalar
527and powers of some variables, such as 5*X^2*Y^3."))
528
529(defmethod print-object ((self term) stream)
530 (print-unreadable-object (self stream :type t :identity t)
531 (with-accessors ((exponents monom-exponents)
532 (coeff term-coeff))
533 self
534 (format stream "EXPONENTS=~A COEFF=~A"
535 exponents coeff))))
536
537(defmethod universal-equalp ((term1 term) (term2 term))
538 "Returns T if TERM1 and TERM2 are equal as MONOM, and coefficients
539are UNIVERSAL-EQUALP."
540 (and (call-next-method)
541 (universal-equalp (term-coeff term1) (term-coeff term2))))
542
543(defmethod update-instance-for-different-class :after ((old monom) (new term) &key)
544 (setf (term-coeff new) 1))
545
546(defmethod multiply-by :before ((self term) (other term))
547 "Destructively multiply terms SELF and OTHER and store the result into SELF.
548It returns SELF."
549 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
550
551(defmethod left-tensor-product-by :before ((self term) (other term))
552 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
553
554(defmethod right-tensor-product-by :before ((self term) (other term))
555 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
556
557(defmethod divide-by :before ((self term) (other term))
558 (setf (term-coeff self) (divide-by (term-coeff self) (term-coeff other))))
559
560(defgeneric unary-minus (self)
561 (:method ((self term))
562 (setf (term-coeff self) (unary-minus (term-coeff self)))
563 self))
564
565(defgeneric universal-zerop (self)
566 (:method ((self term))
567 (universal-zerop (term-coeff self))))
Note: See TracBrowser for help on using the repository browser.