close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 3591

Last change on this file since 3591 was 3591, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 20.5 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "MONOM"
23 (:use :cl :copy)
24 (:export "MONOM"
25 "EXPONENT"
26 "MONOM-DIMENSION"
27 "MONOM-EXPONENTS"
28 "MONOM-EQUALP"
29 "MONOM-ELT"
30 "MONOM-TOTAL-DEGREE"
31 "MONOM-SUGAR"
32 "MONOM-MULTIPLY-BY"
33 "MONOM-DIVIDE-BY"
34 "MONOM-COPY-INSTANCE"
35 "MONOM-MULTIPLY-2"
36 "MONOM-MULTIPLY"
37 "MONOM-DIVIDES-P"
38 "MONOM-DIVIDES-LCM-P"
39 "MONOM-LCM-DIVIDES-LCM-P"
40 "MONOM-LCM-EQUAL-LCM-P"
41 "MONOM-DIVISIBLE-BY-P"
42 "MONOM-REL-PRIME-P"
43 "MONOM-LCM"
44 "MONOM-GCD"
45 "MONOM-DEPENDS-P"
46 "MONOM-LEFT-TENSOR-PRODUCT-BY"
47 "MONOM-RIGHT-TENSOR-PRODUCT-BY"
48 "MONOM-LEFT-CONTRACT"
49 "MAKE-MONOM-VARIABLE"
50 "MONOM->LIST"
51 "LEX>"
52 "GRLEX>"
53 "REVLEX>"
54 "GREVLEX>"
55 "INVLEX>"
56 "REVERSE-MONOMIAL-ORDER"
57 "MAKE-ELIMINATION-ORDER-FACTORY")
58 (:documentation
59 "This package implements basic operations on monomials, including
60various monomial orders.
61
62DATA STRUCTURES: Conceptually, monomials can be represented as lists:
63
64 monom: (n1 n2 ... nk) where ni are non-negative integers
65
66However, lists may be implemented as other sequence types, so the
67flexibility to change the representation should be maintained in the
68code to use general operations on sequences whenever possible. The
69optimization for the actual representation should be left to
70declarations and the compiler.
71
72EXAMPLES: Suppose that variables are x and y. Then
73
74 Monom x*y^2 ---> (1 2) "))
75
76(in-package :monom)
77
78(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
79
80(deftype exponent ()
81 "Type of exponent in a monomial."
82 'fixnum)
83
84(defclass monom ()
85 ((exponents :initarg :exponents :accessor monom-exponents
86 :documentation "The powers of the variables."))
87 ;; default-initargs are not needed, they are handled by SHARED-INITIALIZE
88 ;;(:default-initargs :dimension 'foo :exponents 'bar :exponent 'baz)
89 (:documentation
90 "Implements a monomial, i.e. a product of powers
91of variables, like X*Y^2."))
92
93(defmethod print-object ((self monom) stream)
94 (print-unreadable-object (self stream :type t :identity t)
95 (with-accessors ((exponents monom-exponents))
96 self
97 (format stream "EXPONENTS=~A"
98 exponents))))
99
100(defmethod initialize-instance :after ((self monom)
101 &key
102 (dimension 0 dimension-supplied-p)
103 (exponents nil exponents-supplied-p)
104 (exponent 0)
105 &allow-other-keys
106 )
107 "The following INITIALIZE-INSTANCE method allows instance initialization
108of a MONOM in a style similar to MAKE-ARRAY, e.g.:
109
110 (MAKE-INSTANCE :EXPONENTS '(1 2 3)) --> #<MONOM EXPONENTS=#(1 2 3)>
111 (MAKE-INSTANCE :DIMENSION 3) --> #<MONOM EXPONENTS=#(0 0 0)>
112 (MAKE-INSTANCE :DIMENSION 3 :EXPONENT 7) --> #<MONOM EXPONENTS=#(7 7 7)>
113
114If both DIMENSION and EXPONENTS are supplied, they must be compatible,
115i.e. the length of EXPONENTS must be equal DIMENSION. If EXPONENTS
116is not supplied, a monom with repeated value EXPONENT is created.
117By default EXPONENT is 0, which results in a constant monomial.
118"
119 (cond
120 (exponents-supplied-p
121 (when (and dimension-supplied-p
122 (/= dimension (length exponents)))
123 (error "EXPONENTS (~A) must have supplied length DIMENSION (~A)"
124 exponents dimension))
125 (let ((dim (length exponents)))
126 (setf (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
127 (dimension-supplied-p
128 ;; when all exponents are to be identical
129 (setf (slot-value self 'exponents) (make-array (list dimension)
130 :initial-element exponent
131 :element-type 'exponent)))
132 (t
133 (error "Initarg DIMENSION or EXPONENTS must be supplied."))))
134
135(defgeneric monom-dimension (m)
136 (:method ((m monom))
137 (length (monom-exponents m))))
138
139(defgeneric universal-equalp (object1 object2)
140 (:documentation "Returns T iff OBJECT1 and OBJECT2 are equal.")
141 (:method ((m1 monom) (m2 monom))
142 "Returns T iff monomials M1 and M2 have identical EXPONENTS."
143 (equalp (monom-exponents m1) (monom-exponents m2))))
144
145(defgeneric monom-elt (m index)
146 (:documentation "Return the power in the monomial M of variable number INDEX.")
147 (:method ((m monom) index)
148 "Return the power in the monomial M of variable number INDEX."
149 (with-slots (exponents)
150 m
151 (elt exponents index))))
152
153(defgeneric (setf monom-elt) (new-value m index)
154 (:documentation "Set the power in the monomial M of variable number INDEX.")
155 (:method (new-value (m monom) index)
156 (with-slots (exponents)
157 m
158 (setf (elt exponents index) new-value))))
159
160(defgeneric total-degree (m &optional start end)
161 (:documentation "Return the total degree of a monomoal M. Optinally, a range
162of variables may be specified with arguments START and END.")
163 (:method ((m monom) &optional (start 0) (end (monom-dimension m)))
164 (declare (type fixnum start end))
165 (with-slots (exponents)
166 m
167 (reduce #'+ exponents :start start :end end))))
168
169(defgeneric sugar (m &optional start end)
170 (:documentation "Return the sugar of a monomial M. Optinally, a range
171of variables may be specified with arguments START and END.")
172 (:method ((m monom) &optional (start 0) (end (monom-dimension m)))
173 (declare (type fixnum start end))
174 (total-degree m start end)))
175
176(defgeneric multiply-by (self other)
177 (:documentation "Multiply SELF by OTHER, return SELF.")
178 (:method ((self monom) (other monom))
179 (with-slots ((exponents1 exponents))
180 self
181 (with-slots ((exponents2 exponents))
182 other
183 (unless (= (length exponents1) (length exponents2))
184 (error "Incompatible dimensions"))
185 (map-into exponents1 #'+ exponents1 exponents2)))
186 self))
187
188(defgeneric divide-by (self other)
189 (:documentation "Divide SELF by OTHER, return SELF.")
190 (:method ((self monom) (other monom))
191 (with-slots ((exponents1 exponents))
192 self
193 (with-slots ((exponents2 exponents))
194 other
195 (unless (= (length exponents1) (length exponents2))
196 (error "divide-by: Incompatible dimensions."))
197 (unless (every #'>= exponents1 exponents2)
198 (error "divide-by: Negative power would result."))
199 (map-into exponents1 #'- exponents1 exponents2)))
200 self))
201
202(defmethod copy-instance :around ((object monom) &rest initargs &key &allow-other-keys)
203 "An :AROUND method of COPY-INSTANCE. It replaces
204exponents with a fresh copy of the sequence."
205 (declare (ignore object initargs))
206 (let ((copy (call-next-method)))
207 (setf (monom-exponents copy) (copy-seq (monom-exponents copy)))
208 copy))
209
210(defun multiply-2 (object1 object2)
211 "Multiply OBJECT1 by OBJECT2"
212 (multiply-by (copy-instance object1) (copy-instance object2)))
213
214(defun multiply (&rest factors)
215 "Non-destructively multiply list FACTORS."
216 (reduce #'multiply-2 factors))
217
218(defun divide (numerator &rest denominators)
219 "Non-destructively divide object NUMERATOR by product of DENOMINATORS."
220 (divide-by (copy-instance numerator) (multiply denominators)))
221
222(defgeneric divides-p (object1 object2)
223 (:documentation "Returns T if OBJECT1 divides OBJECT2.")
224 (:method ((m1 monom) (m2 monom))
225 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
226 (with-slots ((exponents1 exponents))
227 m1
228 (with-slots ((exponents2 exponents))
229 m2
230 (every #'<= exponents1 exponents2)))))
231
232(defgeneric divides-lcm-p (object1 object2 object3)
233 (:documentation "Returns T if OBJECT1 divides LCM(OBJECT2,OBJECT3), NIL otherwise."
234 (:method ((m1 monom) (m2 monom) (m3 monom))
235 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
236 (every #'(lambda (x y z) (<= x (max y z)))
237 exponents1 exponents2 exponents3)))
238
239(defgeneric lcm-divides-lcm-p (object1 object2 object3 object4)
240 (:method ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
241 "Returns T if monomial LCM(M1,M2) divides LCM(M3,M4), NIL otherwise."
242 (with-slots ((exponents1 exponents))
243 m1
244 (with-slots ((exponents2 exponents))
245 m2
246 (with-slots ((exponents3 exponents))
247 m3
248 (with-slots ((exponents4 exponents))
249 m4
250 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
251 exponents1 exponents2 exponents3 exponents4)))))))
252
253(defgeneric monom-lcm-equal-lcm-p (object1 object2 object3 object4)
254 (:method ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
255 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
256 (with-slots ((exponents1 exponents))
257 m1
258 (with-slots ((exponents2 exponents))
259 m2
260 (with-slots ((exponents3 exponents))
261 m3
262 (with-slots ((exponents4 exponents))
263 m4
264 (every
265 #'(lambda (x y z w) (= (max x y) (max z w)))
266 exponents1 exponents2 exponents3 exponents4)))))))
267
268(defgeneric divisible-by-p (object1 object2)
269 (:documentation "Return T if OBJECT1 is divisible by OBJECT2.")
270 (:method ((m1 monom) (m2 monom))
271 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
272 (with-slots ((exponents1 exponents))
273 m1
274 (with-slots ((exponents2 exponents))
275 m2
276 (every #'>= exponents1 exponents2)))))
277
278(defgeneric rel-prime-p (object1 object2)
279 (:documentation "Returns T if objects OBJECT1 and OBJECT2 are relatively prime.")
280 (:method ((m1 monom) (m2 monom))
281 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
282 (with-slots ((exponents1 exponents))
283 m1
284 (with-slots ((exponents2 exponents))
285 m2
286 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2)))))
287
288(defgeneric monom-lcm (object1 object2)
289 (:documentation "Returns the multiple of objects OBJECT1 and OBJECT2.")
290 (:method ((m1 monom) (m2 monom))
291 "Returns least common multiple of monomials M1 and M2."
292 (with-slots ((exponents1 exponents))
293 m1
294 (with-slots ((exponents2 exponents))
295 m2
296 (let* ((exponents (copy-seq exponents1)))
297 (map-into exponents #'max exponents1 exponents2)
298 (make-instance 'monom :exponents exponents))))))
299
300
301(defgeneric universal-gcd (object1 object2)
302 (:documentation "Returns GCD of objects OBJECT1 and OBJECT2")
303 (:method ((m1 monom) (m2 monom))
304 "Returns greatest common divisor of monomials M1 and M2."
305 (with-slots ((exponents1 exponents))
306 m1
307 (with-slots ((exponents2 exponents))
308 m2
309 (let* ((exponents (copy-seq exponents1)))
310 (map-into exponents #'min exponents1 exponents2)
311 (make-instance 'monom :exponents exponents))))))
312
313(defgeneric depends-p (object k)
314 (:documentation "Returns T iff object OBJECT depends on variable K.")
315 (:method ((m monom) k)
316 "Return T if the monomial M depends on variable number K."
317 (declare (type fixnum k))
318 (with-slots (exponents)
319 m
320 (plusp (elt exponents k)))))
321
322(defgeneric left-tensor-product-by (self other)
323 (:documentation "Returns a tensor product SELF by OTHER, stored into
324 SELF. Return SELF.")
325 (:method ((self monom) (other monom))
326 (with-slots ((exponents1 exponents))
327 self
328 (with-slots ((exponents2 exponents))
329 other
330 (setf exponents1 (concatenate 'vector exponents2 exponents1))))
331 self))
332
333(defgeneric right-tensor-product-by (self other)
334 (:documentation "Returns a tensor product of OTHER by SELF, stored
335 into SELF. Returns SELF.")
336 (:method ((self monom) (other monom))
337 (with-slots ((exponents1 exponents))
338 self
339 (with-slots ((exponents2 exponents))
340 other
341 (setf exponents1 (concatenate 'vector exponents1 exponents2))))
342 self))
343
344(defgeneric left-contract (self k)
345 (:documentation "Drop the first K variables in object SELF.")
346 (:method ((self monom) k)
347 "Drop the first K variables in monomial M."
348 (declare (fixnum k))
349 (with-slots (exponents)
350 self
351 (setf exponents (subseq exponents k)))
352 self))
353
354(defun make-monom-variable (nvars pos &optional (power 1)
355 &aux (m (make-instance 'monom :dimension nvars)))
356 "Construct a monomial in the polynomial ring
357RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
358which represents a single variable. It assumes number of variables
359NVARS and the variable is at position POS. Optionally, the variable
360may appear raised to power POWER. "
361 (declare (type fixnum nvars pos power) (type monom m))
362 (with-slots (exponents)
363 m
364 (setf (elt exponents pos) power)
365 m))
366
367(defmethod monom->list ((m monom))
368 "A human-readable representation of a monomial M as a list of exponents."
369 (coerce (monom-exponents m) 'list))
370
371
372;; pure lexicographic
373(defgeneric lex> (p q &optional start end)
374 (:documentation "Return T if P>Q with respect to lexicographic
375order, otherwise NIL. The second returned value is T if P=Q,
376otherwise it is NIL.")
377 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
378 (declare (type fixnum start end))
379 (do ((i start (1+ i)))
380 ((>= i end) (values nil t))
381 (cond
382 ((> (monom-elt p i) (monom-elt q i))
383 (return-from lex> (values t nil)))
384 ((< (monom-elt p i) (monom-elt q i))
385 (return-from lex> (values nil nil)))))))
386
387;; total degree order, ties broken by lexicographic
388(defgeneric grlex> (p q &optional start end)
389 (:documentation "Return T if P>Q with respect to graded
390lexicographic order, otherwise NIL. The second returned value is T if
391P=Q, otherwise it is NIL.")
392 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
393 (declare (type monom p q) (type fixnum start end))
394 (let ((d1 (total-degree p start end))
395 (d2 (total-degree q start end)))
396 (declare (type fixnum d1 d2))
397 (cond
398 ((> d1 d2) (values t nil))
399 ((< d1 d2) (values nil nil))
400 (t
401 (lex> p q start end))))))
402
403;; reverse lexicographic
404(defgeneric revlex> (p q &optional start end)
405 (:documentation "Return T if P>Q with respect to reverse
406lexicographic order, NIL otherwise. The second returned value is T if
407P=Q, otherwise it is NIL. This is not and admissible monomial order
408because some sets do not have a minimal element. This order is useful
409in constructing other orders.")
410 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
411 (declare (type fixnum start end))
412 (do ((i (1- end) (1- i)))
413 ((< i start) (values nil t))
414 (declare (type fixnum i))
415 (cond
416 ((< (monom-elt p i) (monom-elt q i))
417 (return-from revlex> (values t nil)))
418 ((> (monom-elt p i) (monom-elt q i))
419 (return-from revlex> (values nil nil)))))))
420
421
422;; total degree, ties broken by reverse lexicographic
423(defgeneric grevlex> (p q &optional start end)
424 (:documentation "Return T if P>Q with respect to graded reverse
425lexicographic order, NIL otherwise. The second returned value is T if
426P=Q, otherwise it is NIL.")
427 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
428 (declare (type fixnum start end))
429 (let ((d1 (total-degree p start end))
430 (d2 (total-degree q start end)))
431 (declare (type fixnum d1 d2))
432 (cond
433 ((> d1 d2) (values t nil))
434 ((< d1 d2) (values nil nil))
435 (t
436 (revlex> p q start end))))))
437
438(defgeneric invlex> (p q &optional start end)
439 (:documentation "Return T if P>Q with respect to inverse
440lexicographic order, NIL otherwise The second returned value is T if
441P=Q, otherwise it is NIL.")
442 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
443 (declare (type fixnum start end))
444 (do ((i (1- end) (1- i)))
445 ((< i start) (values nil t))
446 (declare (type fixnum i))
447 (cond
448 ((> (monom-elt p i) (monom-elt q i))
449 (return-from invlex> (values t nil)))
450 ((< (monom-elt p i) (monom-elt q i))
451 (return-from invlex> (values nil nil)))))))
452
453(defun reverse-monomial-order (order)
454 "Create the inverse monomial order to the given monomial order ORDER."
455 #'(lambda (p q &optional (start 0) (end (monom-dimension q)))
456 (declare (type monom p q) (type fixnum start end))
457 (funcall order q p start end)))
458
459;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
460;;
461;; Order making functions
462;;
463;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
464
465;; This returns a closure with the same signature
466;; as all orders such as #'LEX>.
467(defun make-elimination-order-factory-1 (&optional (secondary-elimination-order #'lex>))
468 "It constructs an elimination order used for the 1-st elimination ideal,
469i.e. for eliminating the first variable. Thus, the order compares the degrees of the
470first variable in P and Q first, with ties broken by SECONDARY-ELIMINATION-ORDER."
471 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
472 (declare (type monom p q) (type fixnum start end))
473 (cond
474 ((> (monom-elt p start) (monom-elt q start))
475 (values t nil))
476 ((< (monom-elt p start) (monom-elt q start))
477 (values nil nil))
478 (t
479 (funcall secondary-elimination-order p q (1+ start) end)))))
480
481;; This returns a closure which is called with an integer argument.
482;; The result is *another closure* with the same signature as all
483;; orders such as #'LEX>.
484(defun make-elimination-order-factory (&optional
485 (primary-elimination-order #'lex>)
486 (secondary-elimination-order #'lex>))
487 "Return a function with a single integer argument K. This should be
488the number of initial K variables X[0],X[1],...,X[K-1], which precede
489remaining variables. The call to the closure creates a predicate
490which compares monomials according to the K-th elimination order. The
491monomial orders PRIMARY-ELIMINATION-ORDER and
492SECONDARY-ELIMINATION-ORDER are used to compare the first K and the
493remaining variables, respectively, with ties broken by lexicographical
494order. That is, if PRIMARY-ELIMINATION-ORDER yields (VALUES NIL T),
495which indicates that the first K variables appear with identical
496powers, then the result is that of a call to
497SECONDARY-ELIMINATION-ORDER applied to the remaining variables
498X[K],X[K+1],..."
499 #'(lambda (k)
500 (cond
501 ((<= k 0)
502 (error "K must be at least 1"))
503 ((= k 1)
504 (make-elimination-order-factory-1 secondary-elimination-order))
505 (t
506 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
507 (declare (type monom p q) (type fixnum start end))
508 (multiple-value-bind (primary equal)
509 (funcall primary-elimination-order p q start k)
510 (if equal
511 (funcall secondary-elimination-order p q k end)
512 (values primary nil))))))))
513
514(defclass term (monom)
515 ((coeff :initarg :coeff :accessor term-coeff))
516 (:default-initargs :coeff nil)
517 (:documentation "Implements a term, i.e. a product of a scalar
518and powers of some variables, such as 5*X^2*Y^3."))
519
520(defmethod print-object ((self term) stream)
521 (print-unreadable-object (self stream :type t :identity t)
522 (with-accessors ((exponents monom-exponents)
523 (coeff term-coeff))
524 self
525 (format stream "EXPONENTS=~A COEFF=~A"
526 exponents coeff))))
527
528(defmethod universal-equalp ((term1 term) (term2 term))
529 "Returns T if TERM1 and TERM2 are equal as MONOM, and coefficients
530are UNIVERSAL-EQUALP."
531 (and (call-next-method)
532 (universal-equalp (term-coeff term1) (term-coeff term2))))
533
534(defmethod update-instance-for-different-class :after ((old monom) (new term) &key)
535 (setf (term-coeff new) 1))
536
537(defmethod multiply-by :before ((self term) (other term))
538 "Destructively multiply terms SELF and OTHER and store the result into SELF.
539It returns SELF."
540 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
541
542(defmethod left-tensor-product-by :before ((self term) (other term))
543 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
544
545(defmethod right-tensor-product-by :before ((self term) (other term))
546 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
547
548(defmethod divide-by :before ((self term) (other term))
549 (setf (term-coeff self) (divide-by (term-coeff self) (term-coeff other))))
550
551(defgeneric unary-minus (self)
552 (:method ((self term))
553 (setf (term-coeff self) (unary-minus (term-coeff self)))
554 self))
555
556(defgeneric universal-zerop (self)
557 (:method ((self term))
558 (universal-zerop (term-coeff self))))
Note: See TracBrowser for help on using the repository browser.