close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 3587

Last change on this file since 3587 was 3587, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 20.3 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "MONOM"
23 (:use :cl :copy)
24 (:export "MONOM"
25 "EXPONENT"
26 "MONOM-DIMENSION"
27 "MONOM-EXPONENTS"
28 "MONOM-EQUALP"
29 "MONOM-ELT"
30 "MONOM-TOTAL-DEGREE"
31 "MONOM-SUGAR"
32 "MONOM-MULTIPLY-BY"
33 "MONOM-DIVIDE-BY"
34 "MONOM-COPY-INSTANCE"
35 "MONOM-MULTIPLY-2"
36 "MONOM-MULTIPLY"
37 "MONOM-DIVIDES-P"
38 "MONOM-DIVIDES-LCM-P"
39 "MONOM-LCM-DIVIDES-LCM-P"
40 "MONOM-LCM-EQUAL-LCM-P"
41 "MONOM-DIVISIBLE-BY-P"
42 "MONOM-REL-PRIME-P"
43 "MONOM-LCM"
44 "MONOM-GCD"
45 "MONOM-DEPENDS-P"
46 "MONOM-LEFT-TENSOR-PRODUCT-BY"
47 "MONOM-RIGHT-TENSOR-PRODUCT-BY"
48 "MONOM-LEFT-CONTRACT"
49 "MAKE-MONOM-VARIABLE"
50 "MONOM->LIST"
51 "LEX>"
52 "GRLEX>"
53 "REVLEX>"
54 "GREVLEX>"
55 "INVLEX>"
56 "REVERSE-MONOMIAL-ORDER"
57 "MAKE-ELIMINATION-ORDER-FACTORY")
58 (:documentation
59 "This package implements basic operations on monomials, including
60various monomial orders.
61
62DATA STRUCTURES: Conceptually, monomials can be represented as lists:
63
64 monom: (n1 n2 ... nk) where ni are non-negative integers
65
66However, lists may be implemented as other sequence types, so the
67flexibility to change the representation should be maintained in the
68code to use general operations on sequences whenever possible. The
69optimization for the actual representation should be left to
70declarations and the compiler.
71
72EXAMPLES: Suppose that variables are x and y. Then
73
74 Monom x*y^2 ---> (1 2) "))
75
76(in-package :monom)
77
78(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
79
80(deftype exponent ()
81 "Type of exponent in a monomial."
82 'fixnum)
83
84(defclass monom ()
85 ((exponents :initarg :exponents :accessor monom-exponents
86 :documentation "The powers of the variables."))
87 ;; default-initargs are not needed, they are handled by SHARED-INITIALIZE
88 ;;(:default-initargs :dimension 'foo :exponents 'bar :exponent 'baz)
89 (:documentation
90 "Implements a monomial, i.e. a product of powers
91of variables, like X*Y^2."))
92
93(defmethod print-object ((self monom) stream)
94 (print-unreadable-object (self stream :type t :identity t)
95 (with-accessors ((exponents monom-exponents))
96 self
97 (format stream "EXPONENTS=~A"
98 exponents))))
99
100(defmethod initialize-instance :after ((self monom)
101 &key
102 (dimension 0 dimension-supplied-p)
103 (exponents nil exponents-supplied-p)
104 (exponent 0)
105 &allow-other-keys
106 )
107 "The following INITIALIZE-INSTANCE method allows instance initialization
108of a MONOM in a style similar to MAKE-ARRAY, e.g.:
109
110 (MAKE-INSTANCE :EXPONENTS '(1 2 3)) --> #<MONOM EXPONENTS=#(1 2 3)>
111 (MAKE-INSTANCE :DIMENSION 3) --> #<MONOM EXPONENTS=#(0 0 0)>
112 (MAKE-INSTANCE :DIMENSION 3 :EXPONENT 7) --> #<MONOM EXPONENTS=#(7 7 7)>
113
114If both DIMENSION and EXPONENTS are supplied, they must be compatible,
115i.e. the length of EXPONENTS must be equal DIMENSION. If EXPONENTS
116is not supplied, a monom with repeated value EXPONENT is created.
117By default EXPONENT is 0, which results in a constant monomial.
118"
119 (cond
120 (exponents-supplied-p
121 (when (and dimension-supplied-p
122 (/= dimension (length exponents)))
123 (error "EXPONENTS (~A) must have supplied length DIMENSION (~A)"
124 exponents dimension))
125 (let ((dim (length exponents)))
126 (setf (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
127 (dimension-supplied-p
128 ;; when all exponents are to be identical
129 (setf (slot-value self 'exponents) (make-array (list dimension)
130 :initial-element exponent
131 :element-type 'exponent)))
132 (t
133 (error "Initarg DIMENSION or EXPONENTS must be supplied."))))
134
135(defgeneric monom-dimension (m)
136 (:method ((m monom))
137 (length (monom-exponents m))))
138
139(defgeneric universal-equalp (object1 object2)
140 (:documentation "Returns T iff OBJECT1 and OBJECT2 are equal.")
141 (:method ((m1 monom) (m2 monom))
142 "Returns T iff monomials M1 and M2 have identical EXPONENTS."
143 (equalp (monom-exponents m1) (monom-exponents m2))))
144
145(defgeneric monom-elt (m index)
146 (:documentation "Return the power in the monomial M of variable number INDEX.")
147 (:method ((m monom) index)
148 "Return the power in the monomial M of variable number INDEX."
149 (with-slots (exponents)
150 m
151 (elt exponents index))))
152
153(defgeneric (setf monom-elt) (new-value m index)
154 (:documentation "Set the power in the monomial M of variable number INDEX.")
155 (:method (new-value (m monom) index)
156 (with-slots (exponents)
157 m
158 (setf (elt exponents index) new-value))))
159
160(defgeneric total-degree (m &optional start end)
161 (:documentation "Return the total degree of a monomoal M. Optinally, a range
162of variables may be specified with arguments START and END.")
163 (:method ((m monom) &optional (start 0) (end (monom-dimension m)))
164 (declare (type fixnum start end))
165 (with-slots (exponents)
166 m
167 (reduce #'+ exponents :start start :end end))))
168
169(defgeneric sugar (m &optional start end)
170 (:documentation "Return the sugar of a monomial M. Optinally, a range
171of variables may be specified with arguments START and END.")
172 (:method ((m monom) &optional (start 0) (end (monom-dimension m)))
173 (declare (type fixnum start end))
174 (total-degree m start end)))
175
176(defgeneric multiply-by (self other)
177 (:documentation "Multiply SELF by OTHER, return SELF.")
178 (:method ((self monom) (other monom))
179 (with-slots ((exponents1 exponents))
180 self
181 (with-slots ((exponents2 exponents))
182 other
183 (unless (= (length exponents1) (length exponents2))
184 (error "Incompatible dimensions"))
185 (map-into exponents1 #'+ exponents1 exponents2)))
186 self))
187
188(defgeneric divide-by (self other)
189 (:documentation "Divide SELF by OTHER, return SELF.")
190 (:method ((self monom) (other monom))
191 (with-slots ((exponents1 exponents))
192 self
193 (with-slots ((exponents2 exponents))
194 other
195 (unless (= (length exponents1) (length exponents2))
196 (error "divide-by: Incompatible dimensions."))
197 (unless (every #'>= exponents1 exponents2)
198 (error "divide-by: Negative power would result."))
199 (map-into exponents1 #'- exponents1 exponents2)))
200 self))
201
202(defmethod copy-instance :around ((object monom) &rest initargs &key &allow-other-keys)
203 "An :AROUND method of COPY-INSTANCE. It replaces
204exponents with a fresh copy of the sequence."
205 (declare (ignore object initargs))
206 (let ((copy (call-next-method)))
207 (setf (monom-exponents copy) (copy-seq (monom-exponents copy)))
208 copy))
209
210(defun multiply-2 (object1 object2)
211 "Multiply OBJECT1 by OBJECT2"
212 (multiply-by (copy-instance object1) (copy-instance object2)))
213
214(defun multiply (&rest factors)
215 "Non-destructively multiply list FACTORS."
216 (reduce #'multiply-2 factors))
217
218(defun divide (numerator &rest denominators)
219 "Non-destructively divide object NUMERATOR by product of DENOMINATORS."
220 (divide-by (copy-instance numerator) (multiply denominators)))
221
222(defmethod monom-divides-p ((m1 monom) (m2 monom))
223 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
224 (with-slots ((exponents1 exponents))
225 m1
226 (with-slots ((exponents2 exponents))
227 m2
228 (every #'<= exponents1 exponents2))))
229
230(defgeneric divides-lcm-p (object1 object2 object3)
231 (:documentation "Returns T if OBJECT1 divides LCM(OBJECT2,OBJECT3), NIL otherwise."
232 (:method ((m1 monom) (m2 monom) (m3 monom))
233 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
234 (every #'(lambda (x y z) (<= x (max y z)))
235 exponents1 exponents2 exponents3)))
236
237(defgeneric lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
238 "Returns T if monomial LCM(M1,M2) divides LCM(M3,M4), NIL otherwise."
239 (with-slots ((exponents1 exponents))
240 m1
241 (with-slots ((exponents2 exponents))
242 m2
243 (with-slots ((exponents3 exponents))
244 m3
245 (with-slots ((exponents4 exponents))
246 m4
247 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
248 exponents1 exponents2 exponents3 exponents4))))))
249
250(defmethod monom-lcm-equal-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
251 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
252 (with-slots ((exponents1 exponents))
253 m1
254 (with-slots ((exponents2 exponents))
255 m2
256 (with-slots ((exponents3 exponents))
257 m3
258 (with-slots ((exponents4 exponents))
259 m4
260 (every
261 #'(lambda (x y z w) (= (max x y) (max z w)))
262 exponents1 exponents2 exponents3 exponents4))))))
263
264(defgeneric divisible-by-p (object1 object2)
265 (:documentation "Return T if OBJECT1 is divisible by OBJECT2.")
266 (:method ((m1 monom) (m2 monom))
267 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
268 (with-slots ((exponents1 exponents))
269 m1
270 (with-slots ((exponents2 exponents))
271 m2
272 (every #'>= exponents1 exponents2)))))
273
274(defgeneric rel-prime-p (object1 object2)
275 (:documentation "Returns T if objects OBJECT1 and OBJECT2 are relatively prime.")
276 (:method ((m1 monom) (m2 monom))
277 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
278 (with-slots ((exponents1 exponents))
279 m1
280 (with-slots ((exponents2 exponents))
281 m2
282 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2)))))
283
284(defgeneric monom-lcm (object1 object2)
285 (:documentation "Returns the multiple of objects OBJECT1 and OBJECT2.")
286 (:method ((m1 monom) (m2 monom))
287 "Returns least common multiple of monomials M1 and M2."
288 (with-slots ((exponents1 exponents))
289 m1
290 (with-slots ((exponents2 exponents))
291 m2
292 (let* ((exponents (copy-seq exponents1)))
293 (map-into exponents #'max exponents1 exponents2)
294 (make-instance 'monom :exponents exponents))))))
295
296
297(defgeneric universal-gcd (object1 object2)
298 (:documentation "Returns GCD of objects OBJECT1 and OBJECT2")
299 (:method ((m1 monom) (m2 monom))
300 "Returns greatest common divisor of monomials M1 and M2."
301 (with-slots ((exponents1 exponents))
302 m1
303 (with-slots ((exponents2 exponents))
304 m2
305 (let* ((exponents (copy-seq exponents1)))
306 (map-into exponents #'min exponents1 exponents2)
307 (make-instance 'monom :exponents exponents))))))
308
309(defgeneric depends-p (object k)
310 (:documentation "Returns T iff object OBJECT depends on variable K.")
311 (:method ((m monom) k)
312 "Return T if the monomial M depends on variable number K."
313 (declare (type fixnum k))
314 (with-slots (exponents)
315 m
316 (plusp (elt exponents k)))))
317
318(defgeneric left-tensor-product-by (self other)
319 (:documentation "Returns a tensor product SELF by OTHER, stored into
320 SELF. Return SELF.")
321 (:method ((self monom) (other monom))
322 (with-slots ((exponents1 exponents))
323 self
324 (with-slots ((exponents2 exponents))
325 other
326 (setf exponents1 (concatenate 'vector exponents2 exponents1))))
327 self))
328
329(defgeneric right-tensor-product-by (self other)
330 (:documentation "Returns a tensor product of OTHER by SELF, stored
331 into SELF. Returns SELF.")
332 (:method ((self monom) (other monom))
333 (with-slots ((exponents1 exponents))
334 self
335 (with-slots ((exponents2 exponents))
336 other
337 (setf exponents1 (concatenate 'vector exponents1 exponents2))))
338 self))
339
340(defgeneric left-contract (self k)
341 (:documentation "Drop the first K variables in object SELF.")
342 (:method ((self monom) k)
343 "Drop the first K variables in monomial M."
344 (declare (fixnum k))
345 (with-slots (exponents)
346 self
347 (setf exponents (subseq exponents k)))
348 self))
349
350(defun make-monom-variable (nvars pos &optional (power 1)
351 &aux (m (make-instance 'monom :dimension nvars)))
352 "Construct a monomial in the polynomial ring
353RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
354which represents a single variable. It assumes number of variables
355NVARS and the variable is at position POS. Optionally, the variable
356may appear raised to power POWER. "
357 (declare (type fixnum nvars pos power) (type monom m))
358 (with-slots (exponents)
359 m
360 (setf (elt exponents pos) power)
361 m))
362
363(defmethod monom->list ((m monom))
364 "A human-readable representation of a monomial M as a list of exponents."
365 (coerce (monom-exponents m) 'list))
366
367
368;; pure lexicographic
369(defgeneric lex> (p q &optional start end)
370 (:documentation "Return T if P>Q with respect to lexicographic
371order, otherwise NIL. The second returned value is T if P=Q,
372otherwise it is NIL.")
373 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
374 (declare (type fixnum start end))
375 (do ((i start (1+ i)))
376 ((>= i end) (values nil t))
377 (cond
378 ((> (monom-elt p i) (monom-elt q i))
379 (return-from lex> (values t nil)))
380 ((< (monom-elt p i) (monom-elt q i))
381 (return-from lex> (values nil nil)))))))
382
383;; total degree order, ties broken by lexicographic
384(defgeneric grlex> (p q &optional start end)
385 (:documentation "Return T if P>Q with respect to graded
386lexicographic order, otherwise NIL. The second returned value is T if
387P=Q, otherwise it is NIL.")
388 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
389 (declare (type monom p q) (type fixnum start end))
390 (let ((d1 (total-degree p start end))
391 (d2 (total-degree q start end)))
392 (declare (type fixnum d1 d2))
393 (cond
394 ((> d1 d2) (values t nil))
395 ((< d1 d2) (values nil nil))
396 (t
397 (lex> p q start end))))))
398
399;; reverse lexicographic
400(defgeneric revlex> (p q &optional start end)
401 (:documentation "Return T if P>Q with respect to reverse
402lexicographic order, NIL otherwise. The second returned value is T if
403P=Q, otherwise it is NIL. This is not and admissible monomial order
404because some sets do not have a minimal element. This order is useful
405in constructing other orders.")
406 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
407 (declare (type fixnum start end))
408 (do ((i (1- end) (1- i)))
409 ((< i start) (values nil t))
410 (declare (type fixnum i))
411 (cond
412 ((< (monom-elt p i) (monom-elt q i))
413 (return-from revlex> (values t nil)))
414 ((> (monom-elt p i) (monom-elt q i))
415 (return-from revlex> (values nil nil)))))))
416
417
418;; total degree, ties broken by reverse lexicographic
419(defgeneric grevlex> (p q &optional start end)
420 (:documentation "Return T if P>Q with respect to graded reverse
421lexicographic order, NIL otherwise. The second returned value is T if
422P=Q, otherwise it is NIL.")
423 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
424 (declare (type fixnum start end))
425 (let ((d1 (total-degree p start end))
426 (d2 (total-degree q start end)))
427 (declare (type fixnum d1 d2))
428 (cond
429 ((> d1 d2) (values t nil))
430 ((< d1 d2) (values nil nil))
431 (t
432 (revlex> p q start end))))))
433
434(defgeneric invlex> (p q &optional start end)
435 (:documentation "Return T if P>Q with respect to inverse
436lexicographic order, NIL otherwise The second returned value is T if
437P=Q, otherwise it is NIL.")
438 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
439 (declare (type fixnum start end))
440 (do ((i (1- end) (1- i)))
441 ((< i start) (values nil t))
442 (declare (type fixnum i))
443 (cond
444 ((> (monom-elt p i) (monom-elt q i))
445 (return-from invlex> (values t nil)))
446 ((< (monom-elt p i) (monom-elt q i))
447 (return-from invlex> (values nil nil)))))))
448
449(defun reverse-monomial-order (order)
450 "Create the inverse monomial order to the given monomial order ORDER."
451 #'(lambda (p q &optional (start 0) (end (monom-dimension q)))
452 (declare (type monom p q) (type fixnum start end))
453 (funcall order q p start end)))
454
455;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
456;;
457;; Order making functions
458;;
459;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
460
461;; This returns a closure with the same signature
462;; as all orders such as #'LEX>.
463(defun make-elimination-order-factory-1 (&optional (secondary-elimination-order #'lex>))
464 "It constructs an elimination order used for the 1-st elimination ideal,
465i.e. for eliminating the first variable. Thus, the order compares the degrees of the
466first variable in P and Q first, with ties broken by SECONDARY-ELIMINATION-ORDER."
467 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
468 (declare (type monom p q) (type fixnum start end))
469 (cond
470 ((> (monom-elt p start) (monom-elt q start))
471 (values t nil))
472 ((< (monom-elt p start) (monom-elt q start))
473 (values nil nil))
474 (t
475 (funcall secondary-elimination-order p q (1+ start) end)))))
476
477;; This returns a closure which is called with an integer argument.
478;; The result is *another closure* with the same signature as all
479;; orders such as #'LEX>.
480(defun make-elimination-order-factory (&optional
481 (primary-elimination-order #'lex>)
482 (secondary-elimination-order #'lex>))
483 "Return a function with a single integer argument K. This should be
484the number of initial K variables X[0],X[1],...,X[K-1], which precede
485remaining variables. The call to the closure creates a predicate
486which compares monomials according to the K-th elimination order. The
487monomial orders PRIMARY-ELIMINATION-ORDER and
488SECONDARY-ELIMINATION-ORDER are used to compare the first K and the
489remaining variables, respectively, with ties broken by lexicographical
490order. That is, if PRIMARY-ELIMINATION-ORDER yields (VALUES NIL T),
491which indicates that the first K variables appear with identical
492powers, then the result is that of a call to
493SECONDARY-ELIMINATION-ORDER applied to the remaining variables
494X[K],X[K+1],..."
495 #'(lambda (k)
496 (cond
497 ((<= k 0)
498 (error "K must be at least 1"))
499 ((= k 1)
500 (make-elimination-order-factory-1 secondary-elimination-order))
501 (t
502 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
503 (declare (type monom p q) (type fixnum start end))
504 (multiple-value-bind (primary equal)
505 (funcall primary-elimination-order p q start k)
506 (if equal
507 (funcall secondary-elimination-order p q k end)
508 (values primary nil))))))))
509
510(defclass term (monom)
511 ((coeff :initarg :coeff :accessor term-coeff))
512 (:default-initargs :coeff nil)
513 (:documentation "Implements a term, i.e. a product of a scalar
514and powers of some variables, such as 5*X^2*Y^3."))
515
516(defmethod print-object ((self term) stream)
517 (print-unreadable-object (self stream :type t :identity t)
518 (with-accessors ((exponents monom-exponents)
519 (coeff term-coeff))
520 self
521 (format stream "EXPONENTS=~A COEFF=~A"
522 exponents coeff))))
523
524(defmethod universal-equalp ((term1 term) (term2 term))
525 "Returns T if TERM1 and TERM2 are equal as MONOM, and coefficients
526are UNIVERSAL-EQUALP."
527 (and (call-next-method)
528 (universal-equalp (term-coeff term1) (term-coeff term2))))
529
530(defmethod update-instance-for-different-class :after ((old monom) (new term) &key)
531 (setf (term-coeff new) 1))
532
533(defmethod multiply-by :before ((self term) (other term))
534 "Destructively multiply terms SELF and OTHER and store the result into SELF.
535It returns SELF."
536 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
537
538(defmethod left-tensor-product-by :before ((self term) (other term))
539 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
540
541(defmethod right-tensor-product-by :before ((self term) (other term))
542 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
543
544(defmethod divide-by :before ((self term) (other term))
545 (setf (term-coeff self) (divide-by (term-coeff self) (term-coeff other))))
546
547(defgeneric unary-minus (self)
548 (:method ((self term))
549 (setf (term-coeff self) (unary-minus (term-coeff self)))
550 self))
551
552(defgeneric universal-zerop (self)
553 (:method ((self term))
554 (universal-zerop (term-coeff self))))
Note: See TracBrowser for help on using the repository browser.