close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 3558

Last change on this file since 3558 was 3558, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 19.5 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "MONOM"
23 (:use :cl :copy)
24 (:export "MONOM"
25 "EXPONENT"
26 "MONOM-DIMENSION"
27 "MONOM-EXPONENTS"
28 "MONOM-EQUALP"
29 "MONOM-ELT"
30 "MONOM-TOTAL-DEGREE"
31 "MONOM-SUGAR"
32 "MONOM-MULTIPLY-BY"
33 "MONOM-DIVIDE-BY"
34 "MONOM-COPY-INSTANCE"
35 "MONOM-MULTIPLY-2"
36 "MONOM-MULTIPLY"
37 "MONOM-DIVIDES-P"
38 "MONOM-DIVIDES-LCM-P"
39 "MONOM-LCM-DIVIDES-LCM-P"
40 "MONOM-LCM-EQUAL-LCM-P"
41 "MONOM-DIVISIBLE-BY-P"
42 "MONOM-REL-PRIME-P"
43 "MONOM-LCM"
44 "MONOM-GCD"
45 "MONOM-DEPENDS-P"
46 "MONOM-LEFT-TENSOR-PRODUCT-BY"
47 "MONOM-RIGHT-TENSOR-PRODUCT-BY"
48 "MONOM-LEFT-CONTRACT"
49 "MAKE-MONOM-VARIABLE"
50 "MONOM->LIST"
51 "LEX>"
52 "GRLEX>"
53 "REVLEX>"
54 "GREVLEX>"
55 "INVLEX>"
56 "REVERSE-MONOMIAL-ORDER"
57 "MAKE-ELIMINATION-ORDER-FACTORY")
58 (:documentation
59 "This package implements basic operations on monomials, including
60various monomial orders.
61
62DATA STRUCTURES: Conceptually, monomials can be represented as lists:
63
64 monom: (n1 n2 ... nk) where ni are non-negative integers
65
66However, lists may be implemented as other sequence types, so the
67flexibility to change the representation should be maintained in the
68code to use general operations on sequences whenever possible. The
69optimization for the actual representation should be left to
70declarations and the compiler.
71
72EXAMPLES: Suppose that variables are x and y. Then
73
74 Monom x*y^2 ---> (1 2) "))
75
76(in-package :monom)
77
78(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
79
80(deftype exponent ()
81 "Type of exponent in a monomial."
82 'fixnum)
83
84(defclass monom ()
85 ((exponents :initarg :exponents :accessor monom-exponents
86 :documentation "The powers of the variables."))
87 ;; default-initargs are not needed, they are handled by SHARED-INITIALIZE
88 ;;(:default-initargs :dimension 'foo :exponents 'bar :exponent 'baz)
89 (:documentation
90 "Implements a monomial, i.e. a product of powers
91of variables, like X*Y^2."))
92
93(defmethod print-object ((self monom) stream)
94 (print-unreadable-object (self stream :type t :identity t)
95 (with-accessors ((exponents monom-exponents))
96 self
97 (format stream "EXPONENTS=~A"
98 exponents))))
99
100(defmethod initialize-instance :after ((self monom)
101 &key
102 (dimension 0 dimension-supplied-p)
103 (exponents nil exponents-supplied-p)
104 (exponent 0)
105 &allow-other-keys
106 )
107 "The following INITIALIZE-INSTANCE method allows instance initialization
108of a MONOM in a style similar to MAKE-ARRAY, e.g.:
109
110 (MAKE-INSTANCE :EXPONENTS '(1 2 3)) --> #<MONOM EXPONENTS=#(1 2 3)>
111 (MAKE-INSTANCE :DIMENSION 3) --> #<MONOM EXPONENTS=#(0 0 0)>
112 (MAKE-INSTANCE :DIMENSION 3 :EXPONENT 7) --> #<MONOM EXPONENTS=#(7 7 7)>
113
114If both DIMENSION and EXPONENTS are supplied, they must be compatible,
115i.e. the length of EXPONENTS must be equal DIMENSION. If EXPONENTS
116is not supplied, a monom with repeated value EXPONENT is created.
117By default EXPONENT is 0, which results in a constant monomial.
118"
119 (cond
120 (exponents-supplied-p
121 (when (and dimension-supplied-p
122 (/= dimension (length exponents)))
123 (error "EXPONENTS (~A) must have supplied length DIMENSION (~A)"
124 exponents dimension))
125 (let ((dim (length exponents)))
126 (setf (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
127 (dimension-supplied-p
128 ;; when all exponents are to be identical
129 (setf (slot-value self 'exponents) (make-array (list dimension)
130 :initial-element exponent
131 :element-type 'exponent)))
132 (t
133 (error "Initarg DIMENSION or EXPONENTS must be supplied."))))
134
135(defgeneric monom-dimension (m)
136 (:method ((m monom))
137 (length (monom-exponents m))))
138
139(defgeneric universal-equalp (object1 object2)
140 (:documentation "Returns T iff OBJECT1 and OBJECT2 are equal.")
141 (:method ((m1 monom) (m2 monom))
142 "Returns T iff monomials M1 and M2 have identical EXPONENTS."
143 (equalp (monom-exponents m1) (monom-exponents m2))))
144
145(defgeneric monom-elt (m index)
146 (:documentation "Return the power in the monomial M of variable number INDEX."
147 (:method ((m monom) index)
148 "Return the power in the monomial M of variable number INDEX."
149 (with-slots (exponents)
150 m
151 (elt exponents index))))
152
153(defgeneric (setf monom-elt) (new-value m index)
154 (:documentation "Set the power in the monomial M of variable number INDEX.")
155 (:method (new-value (m monom) index)
156 (with-slots (exponents)
157 m
158 (setf (elt exponents index) new-value))))
159
160(defgeneric total-degree (m &optional start end)
161 (:documentation "Return the total degree of a monomoal M. Optinally, a range
162of variables may be specified with arguments START and END.")
163 (:method ((m monom) &optional (start 0) (end (monom-dimension m)))
164 (declare (type fixnum start end))
165 (with-slots (exponents)
166 m
167 (reduce #'+ exponents :start start :end end))))
168
169(defgeneric sugar (m &optional start end)
170 (:documentation "Return the sugar of a monomial M. Optinally, a range
171of variables may be specified with arguments START and END.")
172 (:method ((m monom) &optional (start 0) (end (monom-dimension m)))
173 (declare (type fixnum start end))
174 (total-degree m start end)))
175
176(defgeneric multiply-by (self other)
177 (:documentation "Multiply SELF by OTHER, return SELF.")
178 (:method ((self monom) (other monom))
179 (with-slots ((exponents1 exponents))
180 self
181 (with-slots ((exponents2 exponents))
182 other
183 (unless (= (length exponents1) (length exponents2))
184 (error "Incompatible dimensions"))
185 (map-into exponents1 #'+ exponents1 exponents2)))
186 self))
187
188(defgeneric divide-by (self other)
189 (:documentation "Divide SELF by OTHER, return SELF.")
190 (:method ((self monom) (other monom))
191 (with-slots ((exponents1 exponents))
192 self
193 (with-slots ((exponents2 exponents))
194 other
195 (unless (= (length exponents1) (length exponents2))
196 (error "divide-by: Incompatible dimensions."))
197 (unless (every #'>= exponents1 exponents2)
198 (error "divide-by: Negative power would result."))
199 (map-into exponents1 #'- exponents1 exponents2)))
200 self))
201
202(defmethod copy-instance :around ((object monom) &rest initargs &key &allow-other-keys)
203 "An :AROUND method of COPY-INSTANCE. It replaces
204exponents with a fresh copy of the sequence."
205 (declare (ignore object initargs))
206 (let ((copy (call-next-method)))
207 (setf (monom-exponents copy) (copy-seq (monom-exponents copy)))
208 copy))
209
210(defgeneric multiply-2 (object1 object2)
211 (:documentation "Multiply OBJECT1 by OBJECT2")
212 (:method (object1 object2)
213 (universal-multiply-by (copy-instance object1) (copy-instance object2))))
214
215(defun multiply (&rest factors)
216 "Non-destructively multiply list FACTORS."
217 (reduce #'multiply-2 factors))
218
219(defun divide (numerator &rest denominators)
220 "Non-destructively divide object NUMERATOR by product of DENOMINATORS."
221 (divide-by (copy-instance numerator) (multiply denominators)))
222
223(defmethod monom-divides-p ((m1 monom) (m2 monom))
224 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
225 (with-slots ((exponents1 exponents))
226 m1
227 (with-slots ((exponents2 exponents))
228 m2
229 (every #'<= exponents1 exponents2))))
230
231
232(defmethod monom-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
233 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
234 (every #'(lambda (x y z) (<= x (max y z)))
235 m1 m2 m3))
236
237(defmethod monom-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
238 "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
239 (declare (type monom m1 m2 m3 m4))
240 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
241 m1 m2 m3 m4))
242
243(defmethod monom-lcm-equal-lcm-p (m1 m2 m3 m4)
244 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
245 (with-slots ((exponents1 exponents))
246 m1
247 (with-slots ((exponents2 exponents))
248 m2
249 (with-slots ((exponents3 exponents))
250 m3
251 (with-slots ((exponents4 exponents))
252 m4
253 (every
254 #'(lambda (x y z w) (= (max x y) (max z w)))
255 exponents1 exponents2 exponents3 exponents4))))))
256
257(defmethod monom-divisible-by-p ((m1 monom) (m2 monom))
258 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
259 (with-slots ((exponents1 exponents))
260 m1
261 (with-slots ((exponents2 exponents))
262 m2
263 (every #'>= exponents1 exponents2))))
264
265(defmethod monom-rel-prime-p ((m1 monom) (m2 monom))
266 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
267 (with-slots ((exponents1 exponents))
268 m1
269 (with-slots ((exponents2 exponents))
270 m2
271 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
272
273(defmethod monom-lcm ((m1 monom) (m2 monom))
274 "Returns least common multiple of monomials M1 and M2."
275 (with-slots ((exponents1 exponents))
276 m1
277 (with-slots ((exponents2 exponents))
278 m2
279 (let* ((exponents (copy-seq exponents1)))
280 (map-into exponents #'max exponents1 exponents2)
281 (make-instance 'monom :exponents exponents)))))
282
283
284(defmethod monom-gcd ((m1 monom) (m2 monom))
285 "Returns greatest common divisor of monomials M1 and M2."
286 (with-slots ((exponents1 exponents))
287 m1
288 (with-slots ((exponents2 exponents))
289 m2
290 (let* ((exponents (copy-seq exponents1)))
291 (map-into exponents #'min exponents1 exponents2)
292 (make-instance 'monom :exponents exponents)))))
293
294(defmethod monom-depends-p ((m monom) k)
295 "Return T if the monomial M depends on variable number K."
296 (declare (type fixnum k))
297 (with-slots (exponents)
298 m
299 (plusp (elt exponents k))))
300
301(defmethod monom-left-tensor-product-by ((self monom) (other monom))
302 (with-slots ((exponents1 exponents))
303 self
304 (with-slots ((exponents2 exponents))
305 other
306 (setf exponents1 (concatenate 'vector exponents2 exponents1))))
307 self)
308
309(defmethod monom-right-tensor-product-by ((self monom) (other monom))
310 (with-slots ((exponents1 exponents))
311 self
312 (with-slots ((exponents2 exponents))
313 other
314 (setf exponents1 (concatenate 'vector exponents1 exponents2))))
315 self)
316
317(defmethod monom-left-contract ((self monom) k)
318 "Drop the first K variables in monomial M."
319 (declare (fixnum k))
320 (with-slots (exponents)
321 self
322 (setf exponents (subseq exponents k)))
323 self)
324
325(defun make-monom-variable (nvars pos &optional (power 1)
326 &aux (m (make-instance 'monom :dimension nvars)))
327 "Construct a monomial in the polynomial ring
328RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
329which represents a single variable. It assumes number of variables
330NVARS and the variable is at position POS. Optionally, the variable
331may appear raised to power POWER. "
332 (declare (type fixnum nvars pos power) (type monom m))
333 (with-slots (exponents)
334 m
335 (setf (elt exponents pos) power)
336 m))
337
338(defmethod monom->list ((m monom))
339 "A human-readable representation of a monomial M as a list of exponents."
340 (coerce (monom-exponents m) 'list))
341
342
343;; pure lexicographic
344(defgeneric lex> (p q &optional start end)
345 (:documentation "Return T if P>Q with respect to lexicographic
346order, otherwise NIL. The second returned value is T if P=Q,
347otherwise it is NIL.")
348 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
349 (declare (type fixnum start end))
350 (do ((i start (1+ i)))
351 ((>= i end) (values nil t))
352 (cond
353 ((> (monom-elt p i) (monom-elt q i))
354 (return-from lex> (values t nil)))
355 ((< (monom-elt p i) (monom-elt q i))
356 (return-from lex> (values nil nil)))))))
357
358;; total degree order, ties broken by lexicographic
359(defgeneric grlex> (p q &optional start end)
360 (:documentation "Return T if P>Q with respect to graded
361lexicographic order, otherwise NIL. The second returned value is T if
362P=Q, otherwise it is NIL.")
363 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
364 (declare (type monom p q) (type fixnum start end))
365 (let ((d1 (monom-total-degree p start end))
366 (d2 (monom-total-degree q start end)))
367 (declare (type fixnum d1 d2))
368 (cond
369 ((> d1 d2) (values t nil))
370 ((< d1 d2) (values nil nil))
371 (t
372 (lex> p q start end))))))
373
374;; reverse lexicographic
375(defgeneric revlex> (p q &optional start end)
376 (:documentation "Return T if P>Q with respect to reverse
377lexicographic order, NIL otherwise. The second returned value is T if
378P=Q, otherwise it is NIL. This is not and admissible monomial order
379because some sets do not have a minimal element. This order is useful
380in constructing other orders.")
381 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
382 (declare (type fixnum start end))
383 (do ((i (1- end) (1- i)))
384 ((< i start) (values nil t))
385 (declare (type fixnum i))
386 (cond
387 ((< (monom-elt p i) (monom-elt q i))
388 (return-from revlex> (values t nil)))
389 ((> (monom-elt p i) (monom-elt q i))
390 (return-from revlex> (values nil nil)))))))
391
392
393;; total degree, ties broken by reverse lexicographic
394(defgeneric grevlex> (p q &optional start end)
395 (:documentation "Return T if P>Q with respect to graded reverse
396lexicographic order, NIL otherwise. The second returned value is T if
397P=Q, otherwise it is NIL.")
398 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
399 (declare (type fixnum start end))
400 (let ((d1 (monom-total-degree p start end))
401 (d2 (monom-total-degree q start end)))
402 (declare (type fixnum d1 d2))
403 (cond
404 ((> d1 d2) (values t nil))
405 ((< d1 d2) (values nil nil))
406 (t
407 (revlex> p q start end))))))
408
409(defgeneric invlex> (p q &optional start end)
410 (:documentation "Return T if P>Q with respect to inverse
411lexicographic order, NIL otherwise The second returned value is T if
412P=Q, otherwise it is NIL.")
413 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
414 (declare (type fixnum start end))
415 (do ((i (1- end) (1- i)))
416 ((< i start) (values nil t))
417 (declare (type fixnum i))
418 (cond
419 ((> (monom-elt p i) (monom-elt q i))
420 (return-from invlex> (values t nil)))
421 ((< (monom-elt p i) (monom-elt q i))
422 (return-from invlex> (values nil nil)))))))
423
424(defun reverse-monomial-order (order)
425 "Create the inverse monomial order to the given monomial order ORDER."
426 #'(lambda (p q &optional (start 0) (end (monom-dimension q)))
427 (declare (type monom p q) (type fixnum start end))
428 (funcall order q p start end)))
429
430;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
431;;
432;; Order making functions
433;;
434;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
435
436;; This returns a closure with the same signature
437;; as all orders such as #'LEX>.
438(defun make-elimination-order-factory-1 (&optional (secondary-elimination-order #'lex>))
439 "It constructs an elimination order used for the 1-st elimination ideal,
440i.e. for eliminating the first variable. Thus, the order compares the degrees of the
441first variable in P and Q first, with ties broken by SECONDARY-ELIMINATION-ORDER."
442 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
443 (declare (type monom p q) (type fixnum start end))
444 (cond
445 ((> (monom-elt p start) (monom-elt q start))
446 (values t nil))
447 ((< (monom-elt p start) (monom-elt q start))
448 (values nil nil))
449 (t
450 (funcall secondary-elimination-order p q (1+ start) end)))))
451
452;; This returns a closure which is called with an integer argument.
453;; The result is *another closure* with the same signature as all
454;; orders such as #'LEX>.
455(defun make-elimination-order-factory (&optional
456 (primary-elimination-order #'lex>)
457 (secondary-elimination-order #'lex>))
458 "Return a function with a single integer argument K. This should be
459the number of initial K variables X[0],X[1],...,X[K-1], which precede
460remaining variables. The call to the closure creates a predicate
461which compares monomials according to the K-th elimination order. The
462monomial orders PRIMARY-ELIMINATION-ORDER and
463SECONDARY-ELIMINATION-ORDER are used to compare the first K and the
464remaining variables, respectively, with ties broken by lexicographical
465order. That is, if PRIMARY-ELIMINATION-ORDER yields (VALUES NIL T),
466which indicates that the first K variables appear with identical
467powers, then the result is that of a call to
468SECONDARY-ELIMINATION-ORDER applied to the remaining variables
469X[K],X[K+1],..."
470 #'(lambda (k)
471 (cond
472 ((<= k 0)
473 (error "K must be at least 1"))
474 ((= k 1)
475 (make-elimination-order-factory-1 secondary-elimination-order))
476 (t
477 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
478 (declare (type monom p q) (type fixnum start end))
479 (multiple-value-bind (primary equal)
480 (funcall primary-elimination-order p q start k)
481 (if equal
482 (funcall secondary-elimination-order p q k end)
483 (values primary nil))))))))
484
485(defclass term (monom)
486 ((coeff :initarg :coeff :accessor term-coeff))
487 (:default-initargs :coeff nil)
488 (:documentation "Implements a term, i.e. a product of a scalar
489and powers of some variables, such as 5*X^2*Y^3."))
490
491(defmethod print-object ((self term) stream)
492 (print-unreadable-object (self stream :type t :identity t)
493 (with-accessors ((exponents monom-exponents)
494 (coeff term-coeff))
495 self
496 (format stream "EXPONENTS=~A COEFF=~A"
497 exponents coeff))))
498
499(defmethod universal-equalp ((term1 term) (term2 term))
500 "Returns T if TERM1 and TERM2 are equal as MONOM, and coefficients
501are UNIVERSAL-EQUALP."
502 (and (call-next-method)
503 (universal-equalp (term-coeff term1) (term-coeff term2))))
504
505(defmethod update-instance-for-different-class :after ((old monom) (new term) &key)
506 (setf (term-coeff new) 1))
507
508(defmethod multiply-by :before ((self term) (other term))
509 "Destructively multiply terms SELF and OTHER and store the result into SELF.
510It returns SELF."
511 (setf (term-coeff self) (multiply-by (term-coeff self) (scalar-coeff other))))
512
513(defmethod term-left-tensor-product-by :before ((self term) (other term))
514 (setf (term-coeff self) (universal-multiply-by (term-coeff self) (term-coeff other))))
515
516(defmethod term-right-tensor-product-by :before ((self term) (other term))
517 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
518
519(defmethod divide-by :before ((self term) (other term))
520 (setf (term-coeff self) (divide-by (term-coeff self) (term-coeff other))))
521
522(defmethod monom-unary-minus ((self term))
523 (setf (term-coeff self) (monom-unary-minus (term-coeff self)))
524 self)
525
526(defmethod monom-multiply ((term1 term) (term2 term))
527 "Non-destructively multiply TERM1 by TERM2."
528 (monom-multiply-by (copy-instance term1) (copy-instance term2)))
529
530(defmethod monom-multiply ((term1 number) (term2 monom))
531 "Non-destructively multiply TERM1 by TERM2."
532 (monom-multiply term1 (change-class (copy-instance term2) 'term)))
533
534(defmethod monom-zerop ((self term))
535 (zerop (term-coeff self)))
Note: See TracBrowser for help on using the repository browser.