close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 3199

Last change on this file since 3199 was 3196, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 10.7 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "MONOM"
23 (:use :cl :ring)
24 (:export "MONOM"
25 "EXPONENT"
26 "MONOM-DIMENSION"
27 "MONOM-EXPONENTS"
28 "MAKE-MONOM-VARIABLE")
29 (:documentation
30 "This package implements basic operations on monomials.
31DATA STRUCTURES: Conceptually, monomials can be represented as lists:
32
33 monom: (n1 n2 ... nk) where ni are non-negative integers
34
35However, lists may be implemented as other sequence types, so the
36flexibility to change the representation should be maintained in the
37code to use general operations on sequences whenever possible. The
38optimization for the actual representation should be left to
39declarations and the compiler.
40
41EXAMPLES: Suppose that variables are x and y. Then
42
43 Monom x*y^2 ---> (1 2) "))
44
45(in-package :monom)
46
47(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
48
49(deftype exponent ()
50 "Type of exponent in a monomial."
51 'fixnum)
52
53(defclass monom ()
54 ((dimension :initarg :dimension :accessor monom-dimension
55 :documentation "The number of variables.")
56 (exponents :initarg :exponents :accessor monom-exponents
57 :documentation "The powers of the variables."))
58 (:default-initargs :dimension nil :exponents nil :exponent nil)
59 (:documentation
60 "Implements a monomial, i.e. a product of powers
61of variables, like X*Y^2."))
62
63(defmethod print-object ((self monom) stream)
64 (print-unreadable-object (self stream :type t :identity t)
65 (format stream "DIMENSION=~A EXPONENTS=~A"
66 (monom-dimension self)
67 (monom-exponents self))))
68
69(defmethod shared-initialize :after ((self monom) slot-names
70 &key
71 dimension
72 exponents
73 exponent
74 &allow-other-keys
75 )
76 (if (eq slot-names t) (setf slot-names '(dimension exponents)))
77 (dolist (slot-name slot-names)
78 (case slot-name
79 (dimension
80 (cond (dimension
81 (setf (slot-value self 'dimension) dimension))
82 (exponents
83 (setf (slot-value self 'dimension) (length exponents)))
84 (t
85 (error "DIMENSION or EXPONENTS must not be NIL"))))
86 (exponents
87 (cond
88 ;; when exponents are supplied
89 (exponents
90 (let ((dim (length exponents)))
91 (when (and dimension (/= dimension dim))
92 (error "EXPONENTS must have length DIMENSION"))
93 (setf (slot-value self 'dimension) dim
94 (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
95 ;; when all exponents are to be identical
96 (t
97 (let ((dim (slot-value self 'dimension)))
98 (setf (slot-value self 'exponents)
99 (make-array (list dim) :initial-element (or exponent 0)
100 :element-type 'exponent)))))))))
101
102(defmethod r-equalp ((m1 monom) (m2 monom))
103 "Returns T iff monomials M1 and M2 have identical
104EXPONENTS."
105 (equalp (monom-exponents m1) (monom-exponents m2)))
106
107(defmethod r-coeff ((m monom))
108 "A MONOM can be treated as a special case of TERM,
109where the coefficient is 1."
110 1)
111
112(defmethod r-elt ((m monom) index)
113 "Return the power in the monomial M of variable number INDEX."
114 (with-slots (exponents)
115 m
116 (elt exponents index)))
117
118(defmethod (setf r-elt) (new-value (m monom) index)
119 "Return the power in the monomial M of variable number INDEX."
120 (with-slots (exponents)
121 m
122 (setf (elt exponents index) new-value)))
123
124(defmethod r-total-degree ((m monom) &optional (start 0) (end (monom-dimension m)))
125 "Return the todal degree of a monomoal M. Optinally, a range
126of variables may be specified with arguments START and END."
127 (declare (type fixnum start end))
128 (with-slots (exponents)
129 m
130 (reduce #'+ exponents :start start :end end)))
131
132
133(defmethod r-sugar ((m monom) &aux (start 0) (end (monom-dimension m)))
134 "Return the sugar of a monomial M. Optinally, a range
135of variables may be specified with arguments START and END."
136 (declare (type fixnum start end))
137 (r-total-degree m start end))
138
139(defmethod multiply-by ((self monom) (other monom))
140 (with-slots ((exponents1 exponents) (dimension1 dimension))
141 self
142 (with-slots ((exponents2 exponents) (dimension2 dimension))
143 other
144 (unless (= dimension1 dimension2)
145 (error "Incompatible dimensions: ~A and ~A.~%" dimension1 dimension2))
146 (map-into exponents1 #'+ exponents1 exponents2)))
147 self)
148
149(defmethod divide-by ((self monom) (other monom))
150 (with-slots ((exponents1 exponents) (dimension1 dimension))
151 self
152 (with-slots ((exponents2 exponents) (dimension2 dimension))
153 other
154 (unless (= dimension1 dimension2)
155 (error "Incompatible dimensions: ~A and ~A.~%" dimension1 dimension2))
156 (map-into exponents1 #'- exponents1 exponents2)))
157 self)
158
159(defmethod copy-instance :around ((object monom) &rest initargs &key &allow-other-keys)
160 "An :AROUNT method for COPY-INSTANCE. The primary method is a shallow copy,
161 while for monomials we typically need a fresh copy of the
162 exponents."
163 (declare (ignore object initargs))
164 (let ((copy (call-next-method)))
165 (setf (monom-exponents copy) (copy-seq (monom-exponents copy)))
166 copy))
167
168(defmethod r* ((m1 monom) (m2 monom))
169 "Non-destructively multiply monomial M1 by M2."
170 (multiply-by (copy-instance m1) (copy-instance m2)))
171
172(defmethod r/ ((m1 monom) (m2 monom))
173 "Non-destructively divide monomial M1 by monomial M2."
174 (divide-by (copy-instance m1) (copy-instance m2)))
175
176(defmethod r-divides-p ((m1 monom) (m2 monom))
177 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
178 (with-slots ((exponents1 exponents))
179 m1
180 (with-slots ((exponents2 exponents))
181 m2
182 (every #'<= exponents1 exponents2))))
183
184
185(defmethod r-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
186 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
187 (every #'(lambda (x y z) (<= x (max y z)))
188 m1 m2 m3))
189
190
191(defmethod r-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
192 "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
193 (declare (type monom m1 m2 m3 m4))
194 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
195 m1 m2 m3 m4))
196
197(defmethod r-lcm-equal-lcm-p (m1 m2 m3 m4)
198 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
199 (with-slots ((exponents1 exponents))
200 m1
201 (with-slots ((exponents2 exponents))
202 m2
203 (with-slots ((exponents3 exponents))
204 m3
205 (with-slots ((exponents4 exponents))
206 m4
207 (every
208 #'(lambda (x y z w) (= (max x y) (max z w)))
209 exponents1 exponents2 exponents3 exponents4))))))
210
211(defmethod r-divisible-by-p ((m1 monom) (m2 monom))
212 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
213 (with-slots ((exponents1 exponents))
214 m1
215 (with-slots ((exponents2 exponents))
216 m2
217 (every #'>= exponents1 exponents2))))
218
219(defmethod r-rel-prime-p ((m1 monom) (m2 monom))
220 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
221 (with-slots ((exponents1 exponents))
222 m1
223 (with-slots ((exponents2 exponents))
224 m2
225 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
226
227
228(defmethod r-lcm ((m1 monom) (m2 monom))
229 "Returns least common multiple of monomials M1 and M2."
230 (with-slots ((exponents1 exponents) (dimension1 dimension))
231 m1
232 (with-slots ((exponents2 exponents))
233 m2
234 (let* ((exponents (copy-seq exponents1))
235 (dimension dimension1))
236 (map-into exponents #'max exponents1 exponents2)
237 (make-instance 'monom :dimension dimension :exponents exponents)))))
238
239
240(defmethod r-gcd ((m1 monom) (m2 monom))
241 "Returns greatest common divisor of monomials M1 and M2."
242 (with-slots ((exponents1 exponents) (dimension1 dimension))
243 m1
244 (with-slots ((exponents2 exponents))
245 m2
246 (let* ((exponents (copy-seq exponents1))
247 (dimension dimension1))
248 (map-into exponents #'min exponents1 exponents2)
249 (make-instance 'monom :dimension dimension :exponents exponents)))))
250
251(defmethod r-depends-p ((m monom) k)
252 "Return T if the monomial M depends on variable number K."
253 (declare (type fixnum k))
254 (with-slots (exponents)
255 m
256 (plusp (elt exponents k))))
257
258(defmethod left-tensor-product-by ((self monom) (other monom))
259 (with-slots ((exponents1 exponents) (dimension1 dimension))
260 self
261 (with-slots ((exponents2 exponents) (dimension2 dimension))
262 other
263 (setf dimension1 (+ dimension1 dimension2)
264 exponents1 (concatenate 'vector exponents2 exponents1))))
265 self)
266
267(defmethod right-tensor-product-by ((self monom) (other monom))
268 (with-slots ((exponents1 exponents) (dimension1 dimension))
269 self
270 (with-slots ((exponents2 exponents) (dimension2 dimension))
271 other
272 (setf dimension1 (+ dimension1 dimension2)
273 exponents1 (concatenate 'vector exponents1 exponents2))))
274 self)
275
276(defmethod left-contract ((self monom) k)
277 "Drop the first K variables in monomial M."
278 (declare (fixnum k))
279 (with-slots (dimension exponents)
280 self
281 (setf dimension (- dimension k)
282 exponents (subseq exponents k)))
283 self)
284
285(defun make-monom-variable (nvars pos &optional (power 1)
286 &aux (m (make-instance 'monom :dimension nvars)))
287 "Construct a monomial in the polynomial ring
288RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
289which represents a single variable. It assumes number of variables
290NVARS and the variable is at position POS. Optionally, the variable
291may appear raised to power POWER. "
292 (declare (type fixnum nvars pos power) (type monom m))
293 (with-slots (exponents)
294 m
295 (setf (elt exponents pos) power)
296 m))
297
298(defmethod r->list ((m monom))
299 "A human-readable representation of a monomial M as a list of exponents."
300 (coerce (monom-exponents m) 'list))
301
302(defmethod r-dimension ((self monom))
303 (monom-dimension self))
304
305(defmethod r-exponents ((self monom))
306 (monom-exponents self))
Note: See TracBrowser for help on using the repository browser.