close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 2985

Last change on this file since 2985 was 2952, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 9.9 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "MONOM"
23 (:use :cl :ring)
24 (:export "MONOM"
25 "EXPONENT"
26 "MONOM-DIMENSION"
27 "MONOM-EXPONENTS"
28 "MAKE-MONOM-VARIABLE")
29 (:documentation
30 "This package implements basic operations on monomials.
31DATA STRUCTURES: Conceptually, monomials can be represented as lists:
32
33 monom: (n1 n2 ... nk) where ni are non-negative integers
34
35However, lists may be implemented as other sequence types, so the
36flexibility to change the representation should be maintained in the
37code to use general operations on sequences whenever possible. The
38optimization for the actual representation should be left to
39declarations and the compiler.
40
41EXAMPLES: Suppose that variables are x and y. Then
42
43 Monom x*y^2 ---> (1 2) "))
44
45(in-package :monom)
46
47(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
48
49(deftype exponent ()
50 "Type of exponent in a monomial."
51 'fixnum)
52
53(defclass monom ()
54 ((dimension :initarg :dimension :accessor monom-dimension)
55 (exponents :initarg :exponents :accessor monom-exponents))
56 (:default-initargs :dimension nil :exponents nil :exponent nil)
57 (:documentation
58 "Implements a monomial, i.e. a product of powers
59of variables, like X*Y^2."))
60
61(defmethod print-object ((self monom) stream)
62 (format stream "#<MONOM DIMENSION=~A EXPONENTS=~A>"
63 (monom-dimension self)
64 (monom-exponents self)))
65
66(defmethod shared-initialize :after ((self monom) slot-names
67 &key
68 dimension
69 exponents
70 exponent
71 &allow-other-keys
72 )
73 (if (eq slot-names t) (setf slot-names '(dimension exponents)))
74 (dolist (slot-name slot-names)
75 (case slot-name
76 (dimension
77 (cond (dimension
78 (setf (slot-value self 'dimension) dimension))
79 (exponents
80 (setf (slot-value self 'dimension) (length exponents)))
81 (t
82 (error "DIMENSION or EXPONENTS must not be NIL"))))
83 (exponents
84 (cond
85 ;; when exponents are supplied
86 (exponents
87 (let ((dim (length exponents)))
88 (when (and dimension (/= dimension dim))
89 (error "EXPONENTS must have length DIMENSION"))
90 (setf (slot-value self 'dimension) dim
91 (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
92 ;; when all exponents are to be identical
93 (t
94 (let ((dim (slot-value self 'dimension)))
95 (setf (slot-value self 'exponents)
96 (make-array (list dim) :initial-element (or exponent 0)
97 :element-type 'exponent)))))))))
98
99(defmethod r-equalp ((m1 monom) (m2 monom))
100 "Returns T iff monomials M1 and M2 have identical
101EXPONENTS."
102 (equalp (monom-exponents m1) (monom-exponents m2)))
103
104(defmethod r-coeff ((m monom))
105 "A MONOM can be treated as a special case of TERM,
106where the coefficient is 1."
107 1)
108
109(defmethod r-elt ((m monom) index)
110 "Return the power in the monomial M of variable number INDEX."
111 (with-slots (exponents)
112 m
113 (elt exponents index)))
114
115(defmethod (setf r-elt) (new-value (m monom) index)
116 "Return the power in the monomial M of variable number INDEX."
117 (with-slots (exponents)
118 m
119 (setf (elt exponents index) new-value)))
120
121(defmethod r-total-degree ((m monom) &optional (start 0) (end (monom-dimension m)))
122 "Return the todal degree of a monomoal M. Optinally, a range
123of variables may be specified with arguments START and END."
124 (declare (type fixnum start end))
125 (with-slots (exponents)
126 m
127 (reduce #'+ exponents :start start :end end)))
128
129
130(defmethod r-sugar ((m monom) &aux (start 0) (end (monom-dimension m)))
131 "Return the sugar of a monomial M. Optinally, a range
132of variables may be specified with arguments START and END."
133 (declare (type fixnum start end))
134 (r-total-degree m start end))
135
136(defmethod multiply-by ((self monom) (other monom))
137 (with-slots ((exponents1 exponents) (dimension1 dimension))
138 self
139 (with-slots ((exponents2 exponents) (dimension2 dimension))
140 other
141 (unless (= dimension1 dimension2)
142 (error "Incompatible dimensions: ~A and ~A.~%" dimension1 dimension2))
143 (map-into exponents1 #'+ exponents1 exponents2)))
144 self)
145
146(defmethod divide-by ((self monom) (other monom))
147 (with-slots ((exponents1 exponents) (dimension1 dimension))
148 self
149 (with-slots ((exponents2 exponents) (dimension2 dimension))
150 other
151 (unless (= dimension1 dimension2)
152 (error "Incompatible dimensions: ~A and ~A.~%" dimension1 dimension2))
153 (map-into exponents1 #'- exponents1 exponents2)))
154 self)
155
156(defun copy-monom (m)
157 (make-instance 'monom
158 :dimension (monom-dimension m)
159 :exponents (copy-seq (monom-exponents m))))
160
161(defmethod r* ((m1 monom) (m2 monom))
162 "Non-destructively multiply monomial M1 by M2."
163 (multiply-by (copy-monom m1) (copy-monom m2)))
164
165(defmethod r/ ((m1 monom) (m2 monom))
166 "Non-destructively divide monomial M1 by monomial M2."
167 (divide-by (copy-monom m1) (copy-monom m2)))
168
169(defmethod r-divides-p ((m1 monom) (m2 monom))
170 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
171 (with-slots ((exponents1 exponents))
172 m1
173 (with-slots ((exponents2 exponents))
174 m2
175 (every #'<= exponents1 exponents2))))
176
177
178(defmethod r-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
179 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
180 (every #'(lambda (x y z) (<= x (max y z)))
181 m1 m2 m3))
182
183
184(defmethod r-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
185 "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
186 (declare (type monom m1 m2 m3 m4))
187 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
188 m1 m2 m3 m4))
189
190(defmethod r-lcm-equal-lcm-p (m1 m2 m3 m4)
191 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
192 (with-slots ((exponents1 exponents))
193 m1
194 (with-slots ((exponents2 exponents))
195 m2
196 (with-slots ((exponents3 exponents))
197 m3
198 (with-slots ((exponents4 exponents))
199 m4
200 (every
201 #'(lambda (x y z w) (= (max x y) (max z w)))
202 exponents1 exponents2 exponents3 exponents4))))))
203
204(defmethod r-divisible-by-p ((m1 monom) (m2 monom))
205 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
206 (with-slots ((exponents1 exponents))
207 m1
208 (with-slots ((exponents2 exponents))
209 m2
210 (every #'>= exponents1 exponents2))))
211
212(defmethod r-rel-prime-p ((m1 monom) (m2 monom))
213 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
214 (with-slots ((exponents1 exponents))
215 m1
216 (with-slots ((exponents2 exponents))
217 m2
218 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
219
220
221(defmethod r-lcm ((m1 monom) (m2 monom))
222 "Returns least common multiple of monomials M1 and M2."
223 (with-slots ((exponents1 exponents) (dimension1 dimension))
224 m1
225 (with-slots ((exponents2 exponents))
226 m2
227 (let* ((exponents (copy-seq exponents1))
228 (dimension dimension1))
229 (map-into exponents #'max exponents1 exponents2)
230 (make-instance 'monom :dimension dimension :exponents exponents)))))
231
232
233(defmethod r-gcd ((m1 monom) (m2 monom))
234 "Returns greatest common divisor of monomials M1 and M2."
235 (with-slots ((exponents1 exponents) (dimension1 dimension))
236 m1
237 (with-slots ((exponents2 exponents))
238 m2
239 (let* ((exponents (copy-seq exponents1))
240 (dimension dimension1))
241 (map-into exponents #'min exponents1 exponents2)
242 (make-instance 'monom :dimension dimension :exponents exponents)))))
243
244(defmethod r-depends-p ((m monom) k)
245 "Return T if the monomial M depends on variable number K."
246 (declare (type fixnum k))
247 (with-slots (exponents)
248 m
249 (plusp (elt exponents k))))
250
251(defmethod r-tensor-product ((m1 monom) (m2 monom))
252 (with-slots ((exponents1 exponents) (dimension1 dimension))
253 m1
254 (with-slots ((exponents2 exponents) (dimension2 dimension))
255 m2
256 (make-instance 'monom
257 :dimension (+ dimension1 dimension2)
258 :exponents (concatenate 'vector exponents1 exponents2)))))
259
260(defmethod r-contract ((m monom) k)
261 "Drop the first K variables in monomial M."
262 (declare (fixnum k))
263 (with-slots (dimension exponents)
264 m
265 (setf dimension (- dimension k)
266 exponents (subseq exponents k))))
267
268(defun make-monom-variable (nvars pos &optional (power 1)
269 &aux (m (make-instance 'monom :dimension nvars)))
270 "Construct a monomial in the polynomial ring
271RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
272which represents a single variable. It assumes number of variables
273NVARS and the variable is at position POS. Optionally, the variable
274may appear raised to power POWER. "
275 (declare (type fixnum nvars pos power) (type monom m))
276 (with-slots (exponents)
277 m
278 (setf (elt exponents pos) power)
279 m))
280
281(defmethod r->list ((m monom))
282 "A human-readable representation of a monomial M as a list of exponents."
283 (coerce (monom-exponents m) 'list))
284
285(defmethod r-dimension ((self monom))
286 (monom-dimension self))
287
288(defmethod r-exponents ((self monom))
289 (monom-exponents self))
Note: See TracBrowser for help on using the repository browser.