close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 2527

Last change on this file since 2527 was 2524, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 9.7 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "MONOM"
23 (:use :cl :ring)
24 (:export "MONOM"
25 "EXPONENT"
26 "MAKE-MONOM-VARIABLE")
27 (:documentation
28 "This package implements basic operations on monomials.
29DATA STRUCTURES: Conceptually, monomials can be represented as lists:
30
31 monom: (n1 n2 ... nk) where ni are non-negative integers
32
33However, lists may be implemented as other sequence types, so the
34flexibility to change the representation should be maintained in the
35code to use general operations on sequences whenever possible. The
36optimization for the actual representation should be left to
37declarations and the compiler.
38
39EXAMPLES: Suppose that variables are x and y. Then
40
41 Monom x*y^2 ---> (1 2) "))
42
43(in-package :monom)
44
45(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
46
47(deftype exponent ()
48 "Type of exponent in a monomial."
49 'fixnum)
50
51(defclass monom ()
52 ((dimension :initarg :dimension :accessor r-dimension)
53 (exponents :initarg :exponents :accessor r-exponents))
54 (:default-initargs :dimension nil :exponents nil :exponent nil))
55
56(defmethod print-object ((self monom) stream)
57 (format stream "#<MONOM DIMENSION=~A EXPONENTS=~A>"
58 (r-dimension self)
59 (r-exponents self)))
60
61(defmethod shared-initialize :after ((self monom) slot-names
62 &key
63 dimension
64 exponents
65 exponent
66 &allow-other-keys
67 )
68 (if (eq slot-names t) (setf slot-names '(dimension exponents)))
69 (dolist (slot-name slot-names)
70 (case slot-name
71 (dimension
72 (cond (dimension
73 (setf (slot-value self 'dimension) dimension))
74 (exponents
75 (setf (slot-value self 'dimension) (length exponents)))
76 (t
77 (error "DIMENSION or EXPONENTS must not be NIL"))))
78 (exponents
79 (cond
80 ;; when exponents are supplied
81 (exponents
82 (let ((dim (length exponents)))
83 (when (and dimension (/= dimension dim))
84 (error "EXPONENTS must have length DIMENSION"))
85 (setf (slot-value self 'dimension) dim
86 (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
87 ;; when all exponents are to be identical
88 (t
89 (let ((dim (slot-value self 'dimension)))
90 (setf (slot-value self 'exponents)
91 (make-array (list dim) :initial-element (or exponent 0)
92 :element-type 'exponent)))))))))
93
94;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
95;;
96;; Operations on monomials
97;;
98;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
99
100(defmethod r-coeff ((m monom))
101 "A MONOM can be treated as a special case of TERM,
102where the coefficient is 1."
103 1)
104
105(defmethod r-elt ((m monom) index)
106 "Return the power in the monomial M of variable number INDEX."
107 (with-slots (exponents)
108 m
109 (elt exponents index)))
110
111(defmethod (setf r-elt) (new-value (m monom) index)
112 "Return the power in the monomial M of variable number INDEX."
113 (with-slots (exponents)
114 m
115 (setf (elt exponents index) new-value)))
116
117(defmethod r-total-degree ((m monom) &optional (start 0) (end (r-dimension m)))
118 "Return the todal degree of a monomoal M. Optinally, a range
119of variables may be specified with arguments START and END."
120 (declare (type fixnum start end))
121 (with-slots (exponents)
122 m
123 (reduce #'+ exponents :start start :end end)))
124
125
126(defmethod r-sugar ((m monom) &aux (start 0) (end (r-dimension m)))
127 "Return the sugar of a monomial M. Optinally, a range
128of variables may be specified with arguments START and END."
129 (declare (type fixnum start end))
130 (r-total-degree m start end))
131
132(defmethod r* ((m1 monom) (m2 monom))
133 "Multiply monomial M1 by monomial M2."
134 (with-slots ((exponents1 exponents) dimension)
135 m1
136 (with-slots ((exponents2 exponents))
137 m2
138 (let* ((exponents (copy-seq exponents1)))
139 (map-into exponents #'+ exponents1 exponents2)
140 (make-instance 'monom :dimension dimension :exponents exponents)))))
141
142(defmethod multiply-by ((self monom) (other monom))
143 (with-slots ((exponents1 exponents))
144 self
145 (with-slots ((exponents2 exponents))
146 other
147 (map-into exponents1 #'+ exponents1 exponents2)))
148 self)
149
150(defmethod r/ ((m1 monom) (m2 monom))
151 "Divide monomial M1 by monomial M2."
152 (with-slots ((exponents1 exponents) (dimension1 dimension))
153 m1
154 (with-slots ((exponents2 exponents))
155 m2
156 (let* ((exponents (copy-seq exponents1))
157 (dimension dimension1))
158 (map-into exponents #'- exponents1 exponents2)
159 (make-instance 'monom :dimension dimension :exponents exponents)))))
160
161(defmethod r-divides-p ((m1 monom) (m2 monom))
162 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
163 (with-slots ((exponents1 exponents))
164 m1
165 (with-slots ((exponents2 exponents))
166 m2
167 (every #'<= exponents1 exponents2))))
168
169
170(defmethod r-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
171 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
172 (every #'(lambda (x y z) (<= x (max y z)))
173 m1 m2 m3))
174
175
176(defmethod r-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
177 "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
178 (declare (type monom m1 m2 m3 m4))
179 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
180 m1 m2 m3 m4))
181
182(defmethod r-lcm-equal-lcm-p (m1 m2 m3 m4)
183 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
184 (with-slots ((exponents1 exponents))
185 m1
186 (with-slots ((exponents2 exponents))
187 m2
188 (with-slots ((exponents3 exponents))
189 m3
190 (with-slots ((exponents4 exponents))
191 m4
192 (every
193 #'(lambda (x y z w) (= (max x y) (max z w)))
194 exponents1 exponents2 exponents3 exponents4))))))
195
196(defmethod r-divisible-by-p ((m1 monom) (m2 monom))
197 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
198 (with-slots ((exponents1 exponents))
199 m1
200 (with-slots ((exponents2 exponents))
201 m2
202 (every #'>= exponents1 exponents2))))
203
204(defmethod r-rel-prime-p ((m1 monom) (m2 monom))
205 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
206 (with-slots ((exponents1 exponents))
207 m1
208 (with-slots ((exponents2 exponents))
209 m2
210 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
211
212
213(defmethod r-equalp ((m1 monom) (m2 monom))
214 "Returns T if two monomials M1 and M2 are equal."
215 (with-slots ((exponents1 exponents))
216 m1
217 (with-slots ((exponents2 exponents))
218 m2
219 (every #'= exponents1 exponents2))))
220
221(defmethod r-lcm ((m1 monom) (m2 monom))
222 "Returns least common multiple of monomials M1 and M2."
223 (with-slots ((exponents1 exponents) (dimension1 dimension))
224 m1
225 (with-slots ((exponents2 exponents))
226 m2
227 (let* ((exponents (copy-seq exponents1))
228 (dimension dimension1))
229 (map-into exponents #'max exponents1 exponents2)
230 (make-instance 'monom :dimension dimension :exponents exponents)))))
231
232
233(defmethod r-gcd ((m1 monom) (m2 monom))
234 "Returns greatest common divisor of monomials M1 and M2."
235 (with-slots ((exponents1 exponents) (dimension1 dimension))
236 m1
237 (with-slots ((exponents2 exponents))
238 m2
239 (let* ((exponents (copy-seq exponents1))
240 (dimension dimension1))
241 (map-into exponents #'min exponents1 exponents2)
242 (make-instance 'monom :dimension dimension :exponents exponents)))))
243
244(defmethod r-depends-p ((m monom) k)
245 "Return T if the monomial M depends on variable number K."
246 (declare (type fixnum k))
247 (with-slots (exponents)
248 m
249 (plusp (elt exponents k))))
250
251(defmethod r-tensor-product ((m1 monom) (m2 monom))
252 (with-slots ((exponents1 exponents) (dimension1 dimension))
253 m1
254 (with-slots ((exponents2 exponents) (dimension2 dimension))
255 m2
256 (make-instance 'monom
257 :dimension (+ dimension1 dimension2)
258 :exponents (concatenate 'vector exponents1 exponents2)))))
259
260(defmethod r-contract ((m monom) k)
261 "Drop the first K variables in monomial M."
262 (declare (fixnum k))
263 (with-slots (dimension exponents)
264 m
265 (setf dimension (- dimension k)
266 exponents (subseq exponents k))))
267
268(defun make-monom-variable (nvars pos &optional (power 1)
269 &aux (m (make-instance 'monom :dimension nvars)))
270 "Construct a monomial in the polynomial ring
271RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
272which represents a single variable. It assumes number of variables
273NVARS and the variable is at position POS. Optionally, the variable
274may appear raised to power POWER. "
275 (declare (type fixnum nvars pos power) (type monom m))
276 (with-slots (exponents)
277 m
278 (setf (elt exponents pos) power)
279 m))
280
281(defmethod r->list ((m monom))
282 "A human-readable representation of a monomial M as a list of exponents."
283 (coerce (r-exponents m) 'list))
Note: See TracBrowser for help on using the repository browser.