| 1 | ;;; -*- Mode: Lisp -*-
|
|---|
| 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|---|
| 3 | ;;;
|
|---|
| 4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
|---|
| 5 | ;;;
|
|---|
| 6 | ;;; This program is free software; you can redistribute it and/or modify
|
|---|
| 7 | ;;; it under the terms of the GNU General Public License as published by
|
|---|
| 8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
|---|
| 9 | ;;; (at your option) any later version.
|
|---|
| 10 | ;;;
|
|---|
| 11 | ;;; This program is distributed in the hope that it will be useful,
|
|---|
| 12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|---|
| 13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|---|
| 14 | ;;; GNU General Public License for more details.
|
|---|
| 15 | ;;;
|
|---|
| 16 | ;;; You should have received a copy of the GNU General Public License
|
|---|
| 17 | ;;; along with this program; if not, write to the Free Software
|
|---|
| 18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|---|
| 19 | ;;;
|
|---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|---|
| 21 |
|
|---|
| 22 | (defpackage "MONOM"
|
|---|
| 23 | (:use :cl :ring)
|
|---|
| 24 | (:export "MONOM"
|
|---|
| 25 | "EXPONENT"
|
|---|
| 26 | "MAKE-MONOM-VARIABLE")
|
|---|
| 27 | (:documentation
|
|---|
| 28 | "This package implements basic operations on monomials.
|
|---|
| 29 | DATA STRUCTURES: Conceptually, monomials can be represented as lists:
|
|---|
| 30 |
|
|---|
| 31 | monom: (n1 n2 ... nk) where ni are non-negative integers
|
|---|
| 32 |
|
|---|
| 33 | However, lists may be implemented as other sequence types, so the
|
|---|
| 34 | flexibility to change the representation should be maintained in the
|
|---|
| 35 | code to use general operations on sequences whenever possible. The
|
|---|
| 36 | optimization for the actual representation should be left to
|
|---|
| 37 | declarations and the compiler.
|
|---|
| 38 |
|
|---|
| 39 | EXAMPLES: Suppose that variables are x and y. Then
|
|---|
| 40 |
|
|---|
| 41 | Monom x*y^2 ---> (1 2) "))
|
|---|
| 42 |
|
|---|
| 43 | (in-package :monom)
|
|---|
| 44 |
|
|---|
| 45 | (proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
|
|---|
| 46 |
|
|---|
| 47 | (deftype exponent ()
|
|---|
| 48 | "Type of exponent in a monomial."
|
|---|
| 49 | 'fixnum)
|
|---|
| 50 |
|
|---|
| 51 | (defclass monom ()
|
|---|
| 52 | ((dimension :initarg :dimension :accessor r-dimension)
|
|---|
| 53 | (exponents :initarg :exponents :accessor r-exponents))
|
|---|
| 54 | (:default-initargs :dimension nil :exponents nil :exponent nil))
|
|---|
| 55 |
|
|---|
| 56 | (defmethod print-object ((self monom) stream)
|
|---|
| 57 | (format stream "#<MONOM DIMENSION=~A EXPONENTS=~A>"
|
|---|
| 58 | (r-dimension self)
|
|---|
| 59 | (r-exponents self)))
|
|---|
| 60 |
|
|---|
| 61 | (defmethod shared-initialize :after ((self monom) slot-names
|
|---|
| 62 | &key
|
|---|
| 63 | dimension
|
|---|
| 64 | exponents
|
|---|
| 65 | exponent
|
|---|
| 66 | &allow-other-keys
|
|---|
| 67 | )
|
|---|
| 68 | (if (eq slot-names t) (setf slot-names '(dimension exponents)))
|
|---|
| 69 | (dolist (slot-name slot-names)
|
|---|
| 70 | (case slot-name
|
|---|
| 71 | (dimension
|
|---|
| 72 | (cond (dimension
|
|---|
| 73 | (setf (slot-value self 'dimension) dimension))
|
|---|
| 74 | (exponents
|
|---|
| 75 | (setf (slot-value self 'dimension) (length exponents)))
|
|---|
| 76 | (t
|
|---|
| 77 | (error "DIMENSION or EXPONENTS must not be NIL"))))
|
|---|
| 78 | (exponents
|
|---|
| 79 | (cond
|
|---|
| 80 | ;; when exponents are supplied
|
|---|
| 81 | (exponents
|
|---|
| 82 | (let ((dim (length exponents)))
|
|---|
| 83 | (when (and dimension (/= dimension dim))
|
|---|
| 84 | (error "EXPONENTS must have length DIMENSION"))
|
|---|
| 85 | (setf (slot-value self 'dimension) dim
|
|---|
| 86 | (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
|
|---|
| 87 | ;; when all exponents are to be identical
|
|---|
| 88 | (t
|
|---|
| 89 | (let ((dim (slot-value self 'dimension)))
|
|---|
| 90 | (setf (slot-value self 'exponents)
|
|---|
| 91 | (make-array (list dim) :initial-element (or exponent 0)
|
|---|
| 92 | :element-type 'exponent)))))))))
|
|---|
| 93 |
|
|---|
| 94 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|---|
| 95 | ;;
|
|---|
| 96 | ;; Operations on monomials
|
|---|
| 97 | ;;
|
|---|
| 98 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|---|
| 99 |
|
|---|
| 100 | (defmethod r-coeff ((m monom))
|
|---|
| 101 | "A MONOM can be treated as a special case of TERM,
|
|---|
| 102 | where the coefficient is 1."
|
|---|
| 103 | 1)
|
|---|
| 104 |
|
|---|
| 105 | (defmethod r-elt ((m monom) index)
|
|---|
| 106 | "Return the power in the monomial M of variable number INDEX."
|
|---|
| 107 | (with-slots (exponents)
|
|---|
| 108 | m
|
|---|
| 109 | (elt exponents index)))
|
|---|
| 110 |
|
|---|
| 111 | (defmethod (setf r-elt) (new-value (m monom) index)
|
|---|
| 112 | "Return the power in the monomial M of variable number INDEX."
|
|---|
| 113 | (with-slots (exponents)
|
|---|
| 114 | m
|
|---|
| 115 | (setf (elt exponents index) new-value)))
|
|---|
| 116 |
|
|---|
| 117 | (defmethod r-total-degree ((m monom) &optional (start 0) (end (r-dimension m)))
|
|---|
| 118 | "Return the todal degree of a monomoal M. Optinally, a range
|
|---|
| 119 | of variables may be specified with arguments START and END."
|
|---|
| 120 | (declare (type fixnum start end))
|
|---|
| 121 | (with-slots (exponents)
|
|---|
| 122 | m
|
|---|
| 123 | (reduce #'+ exponents :start start :end end)))
|
|---|
| 124 |
|
|---|
| 125 |
|
|---|
| 126 | (defmethod r-sugar ((m monom) &aux (start 0) (end (r-dimension m)))
|
|---|
| 127 | "Return the sugar of a monomial M. Optinally, a range
|
|---|
| 128 | of variables may be specified with arguments START and END."
|
|---|
| 129 | (declare (type fixnum start end))
|
|---|
| 130 | (r-total-degree m start end))
|
|---|
| 131 |
|
|---|
| 132 | (defmethod r* ((m1 monom) (m2 monom))
|
|---|
| 133 | "Multiply monomial M1 by monomial M2."
|
|---|
| 134 | (with-slots ((exponents1 exponents) dimension)
|
|---|
| 135 | m1
|
|---|
| 136 | (with-slots ((exponents2 exponents))
|
|---|
| 137 | m2
|
|---|
| 138 | (let* ((exponents (copy-seq exponents1)))
|
|---|
| 139 | (map-into exponents #'+ exponents1 exponents2)
|
|---|
| 140 | (make-instance 'monom :dimension dimension :exponents exponents)))))
|
|---|
| 141 |
|
|---|
| 142 | (defmethod multiply-by ((self monom) (other monom))
|
|---|
| 143 | (with-slots ((exponents1 exponents))
|
|---|
| 144 | self
|
|---|
| 145 | (with-slots ((exponents2 exponents))
|
|---|
| 146 | other
|
|---|
| 147 | (map-into exponents1 #'+ exponents1 exponents2)))
|
|---|
| 148 | self)
|
|---|
| 149 |
|
|---|
| 150 | (defmethod r/ ((m1 monom) (m2 monom))
|
|---|
| 151 | "Divide monomial M1 by monomial M2."
|
|---|
| 152 | (with-slots ((exponents1 exponents) (dimension1 dimension))
|
|---|
| 153 | m1
|
|---|
| 154 | (with-slots ((exponents2 exponents))
|
|---|
| 155 | m2
|
|---|
| 156 | (let* ((exponents (copy-seq exponents1))
|
|---|
| 157 | (dimension dimension1))
|
|---|
| 158 | (map-into exponents #'- exponents1 exponents2)
|
|---|
| 159 | (make-instance 'monom :dimension dimension :exponents exponents)))))
|
|---|
| 160 |
|
|---|
| 161 | (defmethod r-divides-p ((m1 monom) (m2 monom))
|
|---|
| 162 | "Returns T if monomial M1 divides monomial M2, NIL otherwise."
|
|---|
| 163 | (with-slots ((exponents1 exponents))
|
|---|
| 164 | m1
|
|---|
| 165 | (with-slots ((exponents2 exponents))
|
|---|
| 166 | m2
|
|---|
| 167 | (every #'<= exponents1 exponents2))))
|
|---|
| 168 |
|
|---|
| 169 |
|
|---|
| 170 | (defmethod r-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
|
|---|
| 171 | "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
|
|---|
| 172 | (every #'(lambda (x y z) (<= x (max y z)))
|
|---|
| 173 | m1 m2 m3))
|
|---|
| 174 |
|
|---|
| 175 |
|
|---|
| 176 | (defmethod r-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
|
|---|
| 177 | "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
|
|---|
| 178 | (declare (type monom m1 m2 m3 m4))
|
|---|
| 179 | (every #'(lambda (x y z w) (<= (max x y) (max z w)))
|
|---|
| 180 | m1 m2 m3 m4))
|
|---|
| 181 |
|
|---|
| 182 | (defmethod r-lcm-equal-lcm-p (m1 m2 m3 m4)
|
|---|
| 183 | "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
|
|---|
| 184 | (with-slots ((exponents1 exponents))
|
|---|
| 185 | m1
|
|---|
| 186 | (with-slots ((exponents2 exponents))
|
|---|
| 187 | m2
|
|---|
| 188 | (with-slots ((exponents3 exponents))
|
|---|
| 189 | m3
|
|---|
| 190 | (with-slots ((exponents4 exponents))
|
|---|
| 191 | m4
|
|---|
| 192 | (every
|
|---|
| 193 | #'(lambda (x y z w) (= (max x y) (max z w)))
|
|---|
| 194 | exponents1 exponents2 exponents3 exponents4))))))
|
|---|
| 195 |
|
|---|
| 196 | (defmethod r-divisible-by-p ((m1 monom) (m2 monom))
|
|---|
| 197 | "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
|
|---|
| 198 | (with-slots ((exponents1 exponents))
|
|---|
| 199 | m1
|
|---|
| 200 | (with-slots ((exponents2 exponents))
|
|---|
| 201 | m2
|
|---|
| 202 | (every #'>= exponents1 exponents2))))
|
|---|
| 203 |
|
|---|
| 204 | (defmethod r-rel-prime-p ((m1 monom) (m2 monom))
|
|---|
| 205 | "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
|
|---|
| 206 | (with-slots ((exponents1 exponents))
|
|---|
| 207 | m1
|
|---|
| 208 | (with-slots ((exponents2 exponents))
|
|---|
| 209 | m2
|
|---|
| 210 | (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
|
|---|
| 211 |
|
|---|
| 212 |
|
|---|
| 213 | (defmethod r-equalp ((m1 monom) (m2 monom))
|
|---|
| 214 | "Returns T if two monomials M1 and M2 are equal."
|
|---|
| 215 | (with-slots ((exponents1 exponents))
|
|---|
| 216 | m1
|
|---|
| 217 | (with-slots ((exponents2 exponents))
|
|---|
| 218 | m2
|
|---|
| 219 | (every #'= exponents1 exponents2))))
|
|---|
| 220 |
|
|---|
| 221 | (defmethod r-lcm ((m1 monom) (m2 monom))
|
|---|
| 222 | "Returns least common multiple of monomials M1 and M2."
|
|---|
| 223 | (with-slots ((exponents1 exponents) (dimension1 dimension))
|
|---|
| 224 | m1
|
|---|
| 225 | (with-slots ((exponents2 exponents))
|
|---|
| 226 | m2
|
|---|
| 227 | (let* ((exponents (copy-seq exponents1))
|
|---|
| 228 | (dimension dimension1))
|
|---|
| 229 | (map-into exponents #'max exponents1 exponents2)
|
|---|
| 230 | (make-instance 'monom :dimension dimension :exponents exponents)))))
|
|---|
| 231 |
|
|---|
| 232 |
|
|---|
| 233 | (defmethod r-gcd ((m1 monom) (m2 monom))
|
|---|
| 234 | "Returns greatest common divisor of monomials M1 and M2."
|
|---|
| 235 | (with-slots ((exponents1 exponents) (dimension1 dimension))
|
|---|
| 236 | m1
|
|---|
| 237 | (with-slots ((exponents2 exponents))
|
|---|
| 238 | m2
|
|---|
| 239 | (let* ((exponents (copy-seq exponents1))
|
|---|
| 240 | (dimension dimension1))
|
|---|
| 241 | (map-into exponents #'min exponents1 exponents2)
|
|---|
| 242 | (make-instance 'monom :dimension dimension :exponents exponents)))))
|
|---|
| 243 |
|
|---|
| 244 | (defmethod r-depends-p ((m monom) k)
|
|---|
| 245 | "Return T if the monomial M depends on variable number K."
|
|---|
| 246 | (declare (type fixnum k))
|
|---|
| 247 | (with-slots (exponents)
|
|---|
| 248 | m
|
|---|
| 249 | (plusp (elt exponents k))))
|
|---|
| 250 |
|
|---|
| 251 | (defmethod r-tensor-product ((m1 monom) (m2 monom))
|
|---|
| 252 | (with-slots ((exponents1 exponents) (dimension1 dimension))
|
|---|
| 253 | m1
|
|---|
| 254 | (with-slots ((exponents2 exponents) (dimension2 dimension))
|
|---|
| 255 | m2
|
|---|
| 256 | (make-instance 'monom
|
|---|
| 257 | :dimension (+ dimension1 dimension2)
|
|---|
| 258 | :exponents (concatenate 'vector exponents1 exponents2)))))
|
|---|
| 259 |
|
|---|
| 260 | (defmethod r-contract ((m monom) k)
|
|---|
| 261 | "Drop the first K variables in monomial M."
|
|---|
| 262 | (declare (fixnum k))
|
|---|
| 263 | (with-slots (dimension exponents)
|
|---|
| 264 | m
|
|---|
| 265 | (setf dimension (- dimension k)
|
|---|
| 266 | exponents (subseq exponents k))))
|
|---|
| 267 |
|
|---|
| 268 | (defun make-monom-variable (nvars pos &optional (power 1)
|
|---|
| 269 | &aux (m (make-instance 'monom :dimension nvars)))
|
|---|
| 270 | "Construct a monomial in the polynomial ring
|
|---|
| 271 | RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
|
|---|
| 272 | which represents a single variable. It assumes number of variables
|
|---|
| 273 | NVARS and the variable is at position POS. Optionally, the variable
|
|---|
| 274 | may appear raised to power POWER. "
|
|---|
| 275 | (declare (type fixnum nvars pos power) (type monom m))
|
|---|
| 276 | (with-slots (exponents)
|
|---|
| 277 | m
|
|---|
| 278 | (setf (elt exponents pos) power)
|
|---|
| 279 | m))
|
|---|
| 280 |
|
|---|
| 281 | (defmethod r->list ((m monom))
|
|---|
| 282 | "A human-readable representation of a monomial M as a list of exponents."
|
|---|
| 283 | (coerce (r-exponents m) 'list))
|
|---|