close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 2380

Last change on this file since 2380 was 2374, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 9.8 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22;;----------------------------------------------------------------
23;; This package implements BASIC OPERATIONS ON MONOMIALS
24;;----------------------------------------------------------------
25;; DATA STRUCTURES: Conceptually, monomials can be represented as lists:
26;;
27;; monom: (n1 n2 ... nk) where ni are non-negative integers
28;;
29;; However, lists may be implemented as other sequence types,
30;; so the flexibility to change the representation should be
31;; maintained in the code to use general operations on sequences
32;; whenever possible. The optimization for the actual representation
33;; should be left to declarations and the compiler.
34;;----------------------------------------------------------------
35;; EXAMPLES: Suppose that variables are x and y. Then
36;;
37;; Monom x*y^2 ---> (1 2)
38;;
39;;----------------------------------------------------------------
40
41(defpackage "MONOM"
42 (:use :cl :ring)
43 (:export "MONOM"
44 "EXPONENT"
45 "MAKE-MONOM-VARIABLE"))
46
47(in-package :monom)
48
49(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
50
51(deftype exponent ()
52 "Type of exponent in a monomial."
53 'fixnum)
54
55(defclass monom ()
56 ((dimension :initarg :dimension :accessor r-dimension)
57 (exponents :initarg :exponents :accessor r-exponents))
58 (:default-initargs :dimension nil :exponents nil :exponent nil))
59
60(defmethod print-object ((self monom) stream)
61 (format stream "#<MONOM DIMENSION=~A EXPONENTS=~A>"
62 (r-dimension self)
63 (r-exponents self)))
64
65;; Debug calls to initialize-instance
66(defmethod shared-initialize ((self monom) slot-names
67 &rest
68 initargs
69 &key
70 &allow-other-keys)
71 (format t "MONOM::SHARED-INITIALIZE called with:~&SLOT-NAMES: ~W~&INITARGS: ~W.~%" slot-names initargs)
72 (call-next-method))
73
74(defmethod shared-initialize :after ((self monom) slot-names
75 &key
76 dimension
77 exponents
78 exponent
79 &allow-other-keys
80 )
81 (if (eq slot-names t) (setf slot-names '(dimension exponents)))
82 (dolist (slot-name slot-names)
83 (case slot-name
84 (dimension
85 (cond (dimension
86 (setf (slot-value self 'dimension) dimension))
87 (exponents
88 (setf (slot-value self 'dimension) (length exponents)))
89 (t
90 (error "DIMENSION or EXPONENTS must not be NIL"))))
91 (exponents
92 (cond
93 ;; when exponents are supplied
94 (exponents
95 (let ((dim (length exponents)))
96 (setf (slot-value self 'dimension) dim
97 (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
98 ;; when all exponents are to be identical
99 (t
100 (let ((dim (slot-value self 'dimension)))
101 (setf (slot-value self 'exponents)
102 (make-array (list dim) :initial-element (or exponent 0)
103 :element-type 'exponent)))))))))
104
105;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
106;;
107;; Operations on monomials
108;;
109;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
110
111(defmethod r-elt ((m monom) index)
112 "Return the power in the monomial M of variable number INDEX."
113 (with-slots (exponents)
114 m
115 (elt exponents index)))
116
117(defmethod (setf r-elt) (new-value (m monom) index)
118 "Return the power in the monomial M of variable number INDEX."
119 (with-slots (exponents)
120 m
121 (setf (elt exponents index) new-value)))
122
123(defmethod r-total-degree ((m monom) &optional (start 0) (end (r-dimension m)))
124 "Return the todal degree of a monomoal M. Optinally, a range
125of variables may be specified with arguments START and END."
126 (declare (type fixnum start end))
127 (with-slots (exponents)
128 m
129 (reduce #'+ exponents :start start :end end)))
130
131
132(defmethod r-sugar ((m monom) &aux (start 0) (end (r-dimension m)))
133 "Return the sugar of a monomial M. Optinally, a range
134of variables may be specified with arguments START and END."
135 (declare (type fixnum start end))
136 (r-total-degree m start end))
137
138(defmethod r* ((m1 monom) (m2 monom))
139 "Multiply monomial M1 by monomial M2."
140 (format t "MONOM::R* called with:~& M1: ~A~& M2: ~A~%" m1 m2)
141 (with-slots ((exponents1 exponents) dimension)
142 m1
143 (with-slots ((exponents2 exponents))
144 m2
145 (let* ((exponents (copy-seq exponents1)))
146 (map-into exponents #'+ exponents1 exponents2)
147 (make-instance 'monom :dimension dimension :exponents exponents)))))
148
149
150
151(defmethod r/ ((m1 monom) (m2 monom))
152 "Divide monomial M1 by monomial M2."
153 (with-slots ((exponents1 exponents) (dimension1 dimension))
154 m1
155 (with-slots ((exponents2 exponents))
156 m2
157 (let* ((exponents (copy-seq exponents1))
158 (dimension dimension1))
159 (map-into exponents #'- exponents1 exponents2)
160 (make-instance 'monom :dimension dimension :exponents exponents)))))
161
162(defmethod r-divides-p ((m1 monom) (m2 monom))
163 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
164 (with-slots ((exponents1 exponents))
165 m1
166 (with-slots ((exponents2 exponents))
167 m2
168 (every #'<= exponents1 exponents2))))
169
170
171(defmethod r-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
172 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
173 (every #'(lambda (x y z) (<= x (max y z)))
174 m1 m2 m3))
175
176
177(defmethod r-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
178 "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
179 (declare (type monom m1 m2 m3 m4))
180 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
181 m1 m2 m3 m4))
182
183(defmethod r-lcm-equal-lcm-p (m1 m2 m3 m4)
184 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
185 (with-slots ((exponents1 exponents))
186 m1
187 (with-slots ((exponents2 exponents))
188 m2
189 (with-slots ((exponents3 exponents))
190 m3
191 (with-slots ((exponents4 exponents))
192 m4
193 (every
194 #'(lambda (x y z w) (= (max x y) (max z w)))
195 exponents1 exponents2 exponents3 exponents4))))))
196
197(defmethod r-divisible-by-p ((m1 monom) (m2 monom))
198 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
199 (with-slots ((exponents1 exponents))
200 m1
201 (with-slots ((exponents2 exponents))
202 m2
203 (every #'>= exponents1 exponents2))))
204
205(defmethod r-rel-prime-p ((m1 monom) (m2 monom))
206 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
207 (with-slots ((exponents1 exponents))
208 m1
209 (with-slots ((exponents2 exponents))
210 m2
211 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
212
213
214(defmethod r-equalp ((m1 monom) (m2 monom))
215 "Returns T if two monomials M1 and M2 are equal."
216 (with-slots ((exponents1 exponents))
217 m1
218 (with-slots ((exponents2 exponents))
219 m2
220 (every #'= exponents1 exponents2))))
221
222(defmethod r-lcm ((m1 monom) (m2 monom))
223 "Returns least common multiple of monomials M1 and M2."
224 (with-slots ((exponents1 exponents) (dimension1 dimension))
225 m1
226 (with-slots ((exponents2 exponents))
227 m2
228 (let* ((exponents (copy-seq exponents1))
229 (dimension dimension1))
230 (map-into exponents #'max exponents1 exponents2)
231 (make-instance 'monom :dimension dimension :exponents exponents)))))
232
233
234(defmethod r-gcd ((m1 monom) (m2 monom))
235 "Returns greatest common divisor of monomials M1 and M2."
236 (with-slots ((exponents1 exponents) (dimension1 dimension))
237 m1
238 (with-slots ((exponents2 exponents))
239 m2
240 (let* ((exponents (copy-seq exponents1))
241 (dimension dimension1))
242 (map-into exponents #'min exponents1 exponents2)
243 (make-instance 'monom :dimension dimension :exponents exponents)))))
244
245(defmethod r-depends-p ((m monom) k)
246 "Return T if the monomial M depends on variable number K."
247 (declare (type fixnum k))
248 (with-slots (exponents)
249 m
250 (plusp (elt exponents k))))
251
252(defmethod r-tensor-product ((m1 monom) (m2 monom))
253 (with-slots ((exponents1 exponents) (dimension1 dimension))
254 m1
255 (with-slots ((exponents2 exponents) (dimension2 dimension))
256 m2
257 (make-instance 'monom
258 :dimension (+ dimension1 dimension2)
259 :exponents (concatenate 'vector exponents1 exponents2)))))
260
261(defmethod r-contract ((m monom) k)
262 "Drop the first K variables in monomial M."
263 (declare (fixnum k))
264 (with-slots (dimension exponents)
265 m
266 (setf dimension (- dimension k)
267 exponents (subseq exponents k))))
268
269(defun make-monom-variable (nvars pos &optional (power 1)
270 &aux (m (make-instance 'monom :dimension nvars)))
271 "Construct a monomial in the polynomial ring
272RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
273which represents a single variable. It assumes number of variables
274NVARS and the variable is at position POS. Optionally, the variable
275may appear raised to power POWER. "
276 (declare (type fixnum nvars pos power) (type monom m))
277 (with-slots (exponents)
278 m
279 (setf (elt exponents pos) power)
280 m))
281
282(defmethod r->list ((m monom))
283 "A human-readable representation of a monomial M as a list of exponents."
284 (coerce (r-exponents m) 'list))
Note: See TracBrowser for help on using the repository browser.