| 1 | ;;; -*-  Mode: Lisp -*- 
 | 
|---|
| 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
|---|
| 3 | ;;;                                                                              
 | 
|---|
| 4 | ;;;  Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>          
 | 
|---|
| 5 | ;;;                                                                              
 | 
|---|
| 6 | ;;;  This program is free software; you can redistribute it and/or modify        
 | 
|---|
| 7 | ;;;  it under the terms of the GNU General Public License as published by        
 | 
|---|
| 8 | ;;;  the Free Software Foundation; either version 2 of the License, or           
 | 
|---|
| 9 | ;;;  (at your option) any later version.                                         
 | 
|---|
| 10 | ;;;                                                                              
 | 
|---|
| 11 | ;;;  This program is distributed in the hope that it will be useful,             
 | 
|---|
| 12 | ;;;  but WITHOUT ANY WARRANTY; without even the implied warranty of              
 | 
|---|
| 13 | ;;;  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the               
 | 
|---|
| 14 | ;;;  GNU General Public License for more details.                                
 | 
|---|
| 15 | ;;;                                                                              
 | 
|---|
| 16 | ;;;  You should have received a copy of the GNU General Public License           
 | 
|---|
| 17 | ;;;  along with this program; if not, write to the Free Software                 
 | 
|---|
| 18 | ;;;  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  
 | 
|---|
| 19 | ;;;                                                                              
 | 
|---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
|---|
| 21 | 
 | 
|---|
| 22 | ;;----------------------------------------------------------------
 | 
|---|
| 23 | ;; This package implements BASIC OPERATIONS ON MONOMIALS
 | 
|---|
| 24 | ;;----------------------------------------------------------------
 | 
|---|
| 25 | ;; DATA STRUCTURES: Conceptually, monomials can be represented as lists:
 | 
|---|
| 26 | ;;
 | 
|---|
| 27 | ;;      monom:  (n1 n2 ... nk) where ni are non-negative integers
 | 
|---|
| 28 | ;;
 | 
|---|
| 29 | ;; However, lists may be implemented as other sequence types,
 | 
|---|
| 30 | ;; so the flexibility to change the representation should be
 | 
|---|
| 31 | ;; maintained in the code to use general operations on sequences
 | 
|---|
| 32 | ;; whenever possible. The optimization for the actual representation
 | 
|---|
| 33 | ;; should be left to declarations and the compiler.
 | 
|---|
| 34 | ;;----------------------------------------------------------------
 | 
|---|
| 35 | ;; EXAMPLES: Suppose that variables are x and y. Then
 | 
|---|
| 36 | ;;
 | 
|---|
| 37 | ;;      Monom x*y^2 ---> (1 2)
 | 
|---|
| 38 | ;;
 | 
|---|
| 39 | ;;----------------------------------------------------------------
 | 
|---|
| 40 | 
 | 
|---|
| 41 | (defpackage "MONOM"
 | 
|---|
| 42 |   (:use :cl :ring)
 | 
|---|
| 43 |   (:export "MONOM"
 | 
|---|
| 44 |            "EXPONENT"
 | 
|---|
| 45 |            "MAKE-MONOM"
 | 
|---|
| 46 |            "MONOM-DIMENSION"
 | 
|---|
| 47 |            "MONOM-EXPONENTS"
 | 
|---|
| 48 |            "MAKE-MONOM-VARIABLE"))
 | 
|---|
| 49 | 
 | 
|---|
| 50 | (in-package :monom)
 | 
|---|
| 51 | 
 | 
|---|
| 52 | (proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
 | 
|---|
| 53 | 
 | 
|---|
| 54 | (deftype exponent ()
 | 
|---|
| 55 |   "Type of exponent in a monomial."
 | 
|---|
| 56 |   'fixnum)
 | 
|---|
| 57 | 
 | 
|---|
| 58 | (defclass monom ()
 | 
|---|
| 59 |   ((dimension          :initarg :dimension :accessor monom-dimension)
 | 
|---|
| 60 |    (exponents :initarg :exponents :accessor monom-exponents))
 | 
|---|
| 61 |   (:default-initargs :dimension 0 :exponents nil))
 | 
|---|
| 62 | 
 | 
|---|
| 63 | (defmethod print-object ((m monom) stream)
 | 
|---|
| 64 |   (princ (slot-value m 'exponents) stream))
 | 
|---|
| 65 | 
 | 
|---|
| 66 | (defmethod make-instance :before ((self monom)
 | 
|---|
| 67 |                                   (dimension nil dimension-suppied-p)
 | 
|---|
| 68 |                                   (initial-exponents nil initial-exponents-supplied-p)
 | 
|---|
| 69 |                                   (initial-exponent  nil initial-exponent-supplied-p))
 | 
|---|
| 70 |   "A constructor (factory) of monomials. If DIMENSION is given, a
 | 
|---|
| 71 | sequence of DIMENSION elements of type EXPONENT is constructed, where
 | 
|---|
| 72 | individual elements are the value of INITIAL-EXPONENT, which defaults
 | 
|---|
| 73 | to 0.  Alternatively, all elements may be specified as a list
 | 
|---|
| 74 | INITIAL-EXPONENTS."
 | 
|---|
| 75 |   (with-slots (dimension exponents)
 | 
|---|
| 76 |       self
 | 
|---|
| 77 |     (setf dimension (cond (dimension-suppied-p dimension)
 | 
|---|
| 78 |                           (initial-exponents-supplied-p (length initial-exponents))
 | 
|---|
| 79 |                           (t (error "You must provide DIMENSION or INITIAL-EXPONENTS")))
 | 
|---|
| 80 |           exponents (cond 
 | 
|---|
| 81 |                       ;; when exponents are supplied
 | 
|---|
| 82 |                       (initial-exponents-supplied-p
 | 
|---|
| 83 |                        (when (and dimension-suppied-p (/= dimension (length initial-exponents)))
 | 
|---|
| 84 |                          (error "INITIAL-EXPONENTS must have length DIMENSION"))
 | 
|---|
| 85 |                        (make-array (list dimension) :initial-contents initial-exponents
 | 
|---|
| 86 |                                    :element-type 'exponent))
 | 
|---|
| 87 |                       ;; when all exponents are to be identical
 | 
|---|
| 88 |                       (initial-exponent-supplied-p
 | 
|---|
| 89 |                        (make-array (list dimension) :initial-element initial-exponent
 | 
|---|
| 90 |                                    :element-type 'exponent))
 | 
|---|
| 91 |                       ;; otherwise, all exponents are zero
 | 
|---|
| 92 |                       (t 
 | 
|---|
| 93 |                        (make-array (list dimension) :element-type 'exponent :initial-element 0)))))
 | 
|---|
| 94 |   (call-next-method))
 | 
|---|
| 95 | 
 | 
|---|
| 96 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
|---|
| 97 | ;;
 | 
|---|
| 98 | ;; Operations on monomials
 | 
|---|
| 99 | ;;
 | 
|---|
| 100 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
|---|
| 101 | 
 | 
|---|
| 102 | (defmethod r-dimension ((m monom))
 | 
|---|
| 103 |   (monom-dimension m))
 | 
|---|
| 104 | 
 | 
|---|
| 105 | (defmethod r-elt ((m monom) index)
 | 
|---|
| 106 |   "Return the power in the monomial M of variable number INDEX."
 | 
|---|
| 107 |   (with-slots (exponents)
 | 
|---|
| 108 |       m
 | 
|---|
| 109 |     (elt exponents index)))
 | 
|---|
| 110 | 
 | 
|---|
| 111 | (defmethod (setf r-elt) (new-value (m monom) index)
 | 
|---|
| 112 |   "Return the power in the monomial M of variable number INDEX."
 | 
|---|
| 113 |   (with-slots (exponents)
 | 
|---|
| 114 |       m
 | 
|---|
| 115 |     (setf (elt exponents index) new-value)))
 | 
|---|
| 116 | 
 | 
|---|
| 117 | (defmethod r-total-degree ((m monom) &optional (start 0) (end (r-dimension m)))
 | 
|---|
| 118 |   "Return the todal degree of a monomoal M. Optinally, a range
 | 
|---|
| 119 | of variables may be specified with arguments START and END."
 | 
|---|
| 120 |   (declare (type fixnum start end))
 | 
|---|
| 121 |   (with-slots (exponents)
 | 
|---|
| 122 |       m
 | 
|---|
| 123 |     (reduce #'+ exponents :start start :end end)))
 | 
|---|
| 124 | 
 | 
|---|
| 125 | 
 | 
|---|
| 126 | (defmethod r-sugar ((m monom) &aux (start 0) (end (r-dimension m)))
 | 
|---|
| 127 |   "Return the sugar of a monomial M. Optinally, a range
 | 
|---|
| 128 | of variables may be specified with arguments START and END."
 | 
|---|
| 129 |   (declare (type fixnum start end))
 | 
|---|
| 130 |     (r-total-degree m start end))
 | 
|---|
| 131 | 
 | 
|---|
| 132 | (defmethod r* ((m1 monom) (m2 monom))
 | 
|---|
| 133 |   "Multiply monomial M1 by monomial M2."
 | 
|---|
| 134 |   (with-slots ((exponents1 exponents) dimension)
 | 
|---|
| 135 |       m1
 | 
|---|
| 136 |     (with-slots ((exponents2 exponents))
 | 
|---|
| 137 |         m2
 | 
|---|
| 138 |       (let* ((exponents (copy-seq exponents1)))
 | 
|---|
| 139 |         (map-into exponents #'+ exponents1 exponents2)
 | 
|---|
| 140 |         (make-instance 'monom :dimension dimension :exponents exponents)))))
 | 
|---|
| 141 | 
 | 
|---|
| 142 | 
 | 
|---|
| 143 | 
 | 
|---|
| 144 | (defmethod r/ ((m1 monom) (m2 monom))
 | 
|---|
| 145 |   "Divide monomial M1 by monomial M2."
 | 
|---|
| 146 |   (with-slots ((exponents1 exponents))
 | 
|---|
| 147 |       m1
 | 
|---|
| 148 |     (with-slots ((exponents2 exponents))
 | 
|---|
| 149 |         m2
 | 
|---|
| 150 |       (let* ((exponents (copy-seq exponents1))
 | 
|---|
| 151 |              (dimension (reduce #'+ exponents)))
 | 
|---|
| 152 |         (map-into exponents #'- exponents1 exponents2)
 | 
|---|
| 153 |         (make-instance 'monom :dimension dimension :exponents exponents)))))
 | 
|---|
| 154 | 
 | 
|---|
| 155 | (defmethod r-divides-p ((m1 monom) (m2 monom))
 | 
|---|
| 156 |   "Returns T if monomial M1 divides monomial M2, NIL otherwise."
 | 
|---|
| 157 |   (with-slots ((exponents1 exponents))
 | 
|---|
| 158 |       m1
 | 
|---|
| 159 |     (with-slots ((exponents2 exponents))
 | 
|---|
| 160 |         m2
 | 
|---|
| 161 |       (every #'<= exponents1 exponents2))))
 | 
|---|
| 162 | 
 | 
|---|
| 163 | 
 | 
|---|
| 164 | (defmethod r-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
 | 
|---|
| 165 |   "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
 | 
|---|
| 166 |   (every #'(lambda (x y z) (<= x (max y z))) 
 | 
|---|
| 167 |          m1 m2 m3))
 | 
|---|
| 168 | 
 | 
|---|
| 169 | 
 | 
|---|
| 170 | (defmethod r-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
 | 
|---|
| 171 |   "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
 | 
|---|
| 172 |   (declare (type monom m1 m2 m3 m4))
 | 
|---|
| 173 |   (every #'(lambda (x y z w) (<= (max x y) (max z w))) 
 | 
|---|
| 174 |          m1 m2 m3 m4))
 | 
|---|
| 175 |          
 | 
|---|
| 176 | (defmethod r-lcm-equal-lcm-p (m1 m2 m3 m4)
 | 
|---|
| 177 |   "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
 | 
|---|
| 178 |   (with-slots ((exponents1 exponents))
 | 
|---|
| 179 |       m1
 | 
|---|
| 180 |     (with-slots ((exponents2 exponents))
 | 
|---|
| 181 |         m2
 | 
|---|
| 182 |       (with-slots ((exponents3 exponents))
 | 
|---|
| 183 |           m3
 | 
|---|
| 184 |         (with-slots ((exponents4 exponents))
 | 
|---|
| 185 |             m4
 | 
|---|
| 186 |           (every 
 | 
|---|
| 187 |            #'(lambda (x y z w) (= (max x y) (max z w)))
 | 
|---|
| 188 |            exponents1 exponents2 exponents3 exponents4))))))
 | 
|---|
| 189 | 
 | 
|---|
| 190 | (defmethod r-divisible-by-p ((m1 monom) (m2 monom))
 | 
|---|
| 191 |   "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
 | 
|---|
| 192 |   (with-slots ((exponents1 exponents))
 | 
|---|
| 193 |       m1
 | 
|---|
| 194 |     (with-slots ((exponents2 exponents))
 | 
|---|
| 195 |         m2
 | 
|---|
| 196 |       (every #'>= exponents1 exponents2))))
 | 
|---|
| 197 | 
 | 
|---|
| 198 | (defmethod r-rel-prime-p ((m1 monom) (m2 monom))
 | 
|---|
| 199 |   "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
 | 
|---|
| 200 |   (with-slots ((exponents1 exponents))
 | 
|---|
| 201 |       m1
 | 
|---|
| 202 |     (with-slots ((exponents2 exponents))
 | 
|---|
| 203 |         m2
 | 
|---|
| 204 |       (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
 | 
|---|
| 205 | 
 | 
|---|
| 206 | 
 | 
|---|
| 207 | (defmethod r-equalp ((m1 monom) (m2 monom))
 | 
|---|
| 208 |   "Returns T if two monomials M1 and M2 are equal."
 | 
|---|
| 209 |   (with-slots ((exponents1 exponents))
 | 
|---|
| 210 |       m1
 | 
|---|
| 211 |     (with-slots ((exponents2 exponents))
 | 
|---|
| 212 |         m2
 | 
|---|
| 213 |       (every #'= exponents1 exponents2))))
 | 
|---|
| 214 | 
 | 
|---|
| 215 | (defmethod r-lcm ((m1 monom) (m2 monom)) 
 | 
|---|
| 216 |   "Returns least common multiple of monomials M1 and M2."
 | 
|---|
| 217 |   (with-slots ((exponents1 exponents))
 | 
|---|
| 218 |       m1
 | 
|---|
| 219 |     (with-slots ((exponents2 exponents))
 | 
|---|
| 220 |         m2
 | 
|---|
| 221 |       (let* ((exponents (copy-seq exponents1))
 | 
|---|
| 222 |              (dimension (reduce #'+ exponents)))
 | 
|---|
| 223 |         (map-into exponents #'max exponents1 exponents2)
 | 
|---|
| 224 |         (make-instance 'monom :dimension dimension :exponents exponents)))))
 | 
|---|
| 225 | 
 | 
|---|
| 226 | 
 | 
|---|
| 227 | (defmethod r-gcd ((m1 monom) (m2 monom))
 | 
|---|
| 228 |   "Returns greatest common divisor of monomials M1 and M2."
 | 
|---|
| 229 |   (with-slots ((exponents1 exponents))
 | 
|---|
| 230 |       m1
 | 
|---|
| 231 |     (with-slots ((exponents2 exponents))
 | 
|---|
| 232 |         m2
 | 
|---|
| 233 |       (let* ((exponents (copy-seq exponents1))
 | 
|---|
| 234 |              (dimension (reduce #'+ exponents)))
 | 
|---|
| 235 |         (map-into exponents #'min exponents1 exponents2)
 | 
|---|
| 236 |         (make-instance 'monom :dimension dimension :exponents exponents)))))
 | 
|---|
| 237 | 
 | 
|---|
| 238 | (defmethod r-depends-p ((m monom) k)
 | 
|---|
| 239 |   "Return T if the monomial M depends on variable number K."
 | 
|---|
| 240 |   (declare (type fixnum k))
 | 
|---|
| 241 |   (with-slots (exponents)
 | 
|---|
| 242 |       m
 | 
|---|
| 243 |     (plusp (elt exponents k))))
 | 
|---|
| 244 | 
 | 
|---|
| 245 | (defmethod r-tensor-product ((m1 monom) (m2 monom)
 | 
|---|
| 246 |                              &aux (dimension (+ (r-dimension m1) (r-dimension m2))))
 | 
|---|
| 247 |   (declare (fixnum dimension))
 | 
|---|
| 248 |   (with-slots ((exponents1 exponents))
 | 
|---|
| 249 |       m1
 | 
|---|
| 250 |     (with-slots ((exponents2 exponents))
 | 
|---|
| 251 |         m2
 | 
|---|
| 252 |       (make-instance 'monom 
 | 
|---|
| 253 |                      :dimension dimension
 | 
|---|
| 254 |                      :exponents (concatenate 'vector exponents1 exponents2)))))
 | 
|---|
| 255 | 
 | 
|---|
| 256 | (defmethod r-contract ((m monom) k)
 | 
|---|
| 257 |   "Drop the first K variables in monomial M."
 | 
|---|
| 258 |   (declare (fixnum k))
 | 
|---|
| 259 |   (with-slots (dimension exponents) 
 | 
|---|
| 260 |       m
 | 
|---|
| 261 |     (setf dimension (- dimension k)
 | 
|---|
| 262 |           exponents (subseq exponents k))))
 | 
|---|
| 263 | 
 | 
|---|
| 264 | (defun make-monom-variable (nvars pos &optional (power 1)
 | 
|---|
| 265 |                             &aux (m (make-monom :dimension nvars)))
 | 
|---|
| 266 |   "Construct a monomial in the polynomial ring
 | 
|---|
| 267 | RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
 | 
|---|
| 268 | which represents a single variable. It assumes number of variables
 | 
|---|
| 269 | NVARS and the variable is at position POS. Optionally, the variable
 | 
|---|
| 270 | may appear raised to power POWER. "
 | 
|---|
| 271 |   (declare (type fixnum nvars pos power) (type monom m))
 | 
|---|
| 272 |   (with-slots (exponents)
 | 
|---|
| 273 |       m
 | 
|---|
| 274 |     (setf (elt exponents pos) power)
 | 
|---|
| 275 |     m))
 | 
|---|
| 276 | 
 | 
|---|
| 277 | (defmethod r->list ((m monom))
 | 
|---|
| 278 |   "A human-readable representation of a monomial M as a list of exponents."  
 | 
|---|
| 279 |   (coerce (monom-exponents m) 'list))
 | 
|---|