close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 2013

Last change on this file since 2013 was 1967, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 8.3 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22;;----------------------------------------------------------------
23;; This package implements BASIC OPERATIONS ON MONOMIALS
24;;----------------------------------------------------------------
25;; DATA STRUCTURES: Conceptually, monomials can be represented as lists:
26;;
27;; monom: (n1 n2 ... nk) where ni are non-negative integers
28;;
29;; However, lists may be implemented as other sequence types,
30;; so the flexibility to change the representation should be
31;; maintained in the code to use general operations on sequences
32;; whenever possible. The optimization for the actual representation
33;; should be left to declarations and the compiler.
34;;----------------------------------------------------------------
35;; EXAMPLES: Suppose that variables are x and y. Then
36;;
37;; Monom x*y^2 ---> (1 2)
38;;
39;;----------------------------------------------------------------
40
41(defpackage "MONOM"
42 (:use :cl)
43 (:export "MONOM"
44 "EXPONENT"
45 "MAKE-MONOM"
46 "MAKE-MONOM-VARIABLE"
47 "MONOM-ELT"
48 "MONOM-DIMENSION"
49 "MONOM-TOTAL-DEGREE"
50 "MONOM-SUGAR"
51 "MONOM-DIV"
52 "MONOM-MUL"
53 "MONOM-DIVIDES-P"
54 "MONOM-DIVIDES-MONOM-LCM-P"
55 "MONOM-LCM-DIVIDES-MONOM-LCM-P"
56 "MONOM-LCM-EQUAL-MONOM-LCM-P"
57 "MONOM-DIVISIBLE-BY-P"
58 "MONOM-REL-PRIME-P"
59 "MONOM-EQUAL-P"
60 "MONOM-LCM"
61 "MONOM-GCD"
62 "MONOM-DEPENDS-P"
63 "MONOM-MAP"
64 "MONOM-APPEND"
65 "MONOM-CONTRACT"
66 "MONOM->LIST"))
67
68(in-package :monom)
69
70(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
71
72(deftype exponent ()
73 "Type of exponent in a monomial."
74 'fixnum)
75
76(deftype monom (&optional dim)
77 "Type of monomial."
78 `(simple-array exponent (,dim)))
79
80;; If a monomial is redefined as structure with slot EXPONENTS, the function
81;; below can be the BOA constructor.
82(defun make-monom (&key
83 (dimension nil dimension-suppied-p)
84 (initial-exponents nil initial-exponents-supplied-p)
85 (initial-exponent nil initial-exponent-supplied-p)
86 &aux
87 (dim (cond (dimension-suppied-p dimension)
88 (initial-exponents-supplied-p (length initial-exponents))
89 (t (error "You must provide DIMENSION nor INITIAL-EXPONENTS"))))
90 (monom (cond
91 ;; when exponents are supplied
92 (initial-exponents-supplied-p
93 (make-array (list dim) :initial-contents initial-exponents
94 :element-type 'exponent))
95 ;; when all exponents are to be identical
96 (initial-exponent-supplied-p
97 (make-array (list dim) :initial-element initial-exponent
98 :element-type 'exponent))
99 ;; otherwise, all exponents are zero
100 (t
101 (make-array (list dim) :element-type 'exponent :initial-element 0)))))
102 "A constructor (factory) of monomials. If DIMENSION is given, a sequence of
103DIMENSION elements of type EXPONENT is constructed, where individual
104elements are the value of INITIAL-EXPONENT, which defaults to 0.
105Alternatively, all elements may be specified as a list
106INITIAL-EXPONENTS."
107 monom)
108
109;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
110;;
111;; Operations on monomials
112;;
113;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
114
115(defun monom-dimension (m)
116 (declare (type monom m))
117 (length m))
118
119(defmacro monom-elt (m index)
120 "Return the power in the monomial M of variable number INDEX."
121 `(elt ,m ,index))
122
123(defun monom-total-degree (m &optional (start 0) (end (monom-dimension m)))
124 "Return the todal degree of a monomoal M. Optinally, a range
125of variables may be specified with arguments START and END."
126 (declare (type monom m) (type fixnum start end))
127 (reduce #'+ m :start start :end end))
128
129(defun monom-sugar (m &aux (start 0) (end (monom-dimension m)))
130 "Return the sugar of a monomial M. Optinally, a range
131of variables may be specified with arguments START and END."
132 (declare (type monom m) (type fixnum start end))
133 (monom-total-degree m start end))
134
135(defun monom-div (m1 m2 &aux (result (copy-seq m1)))
136 "Divide monomial M1 by monomial M2."
137 (declare (type monom m1 m2 result))
138 (map-into result #'- m1 m2))
139
140(defun monom-mul (m1 m2 &aux (result (copy-seq m1)))
141 "Multiply monomial M1 by monomial M2."
142 (declare (type monom m1 m2 result))
143 (map-into result #'+ m1 m2))
144
145(defun monom-divides-p (m1 m2)
146 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
147 (declare (type monom m1 m2))
148 (every #'<= m1 m2))
149
150(defun monom-divides-monom-lcm-p (m1 m2 m3)
151 "Returns T if monomial M1 divides MONOM-LCM(M2,M3), NIL otherwise."
152 (declare (type monom m1 m2 m3))
153 (every #'(lambda (x y z) (<= x (max y z)))
154 m1 m2 m3))
155
156(defun monom-lcm-divides-monom-lcm-p (m1 m2 m3 m4)
157 "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
158 (declare (type monom m1 m2 m3 m4))
159 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
160 m1 m2 m3 m4))
161
162
163(defun monom-lcm-equal-monom-lcm-p (m1 m2 m3 m4)
164 "Returns T if monomial MONOM-LCM(M1,M2) equals MONOM-LCM(M3,M4), NIL otherwise."
165 (declare (type monom m1 m2 m3 m4))
166 (every #'(lambda (x y z w) (= (max x y) (max z w)))
167 m1 m2 m3 m4))
168
169
170(defun monom-divisible-by-p (m1 m2)
171 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
172 (declare (type monom m1 m2))
173 (every #'>= m1 m2))
174
175(defun monom-rel-prime-p (m1 m2)
176 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
177 (declare (type monom m1 m2))
178 (every #'(lambda (x y) (zerop (min x y))) m1 m2))
179
180(defun monom-equal-p (m1 m2)
181 "Returns T if two monomials M1 and M2 are equal."
182 (declare (type monom m1 m2))
183 (every #'= m1 m2))
184
185(defun monom-lcm (m1 m2 &aux (result (copy-seq m1)))
186 "Returns least common multiple of monomials M1 and M2."
187 (declare (type monom m1 m2 result))
188 (map-into result #'max m1 m2))
189
190(defun monom-gcd (m1 m2 &aux (result (copy-seq m1)))
191 "Returns greatest common divisor of monomials M1 and M2."
192 (declare (type monom m1 m2 result))
193 (map-into result #'min m1 m2))
194
195(defun monom-depends-p (m k)
196 "Return T if the monomial M depends on variable number K."
197 (declare (type monom m) (type fixnum k))
198 (plusp (monom-elt m k)))
199
200(defmacro monom-map (fun m &rest ml &aux (result `(copy-seq ,m)))
201 "Map function FUN of one argument over the powers of a monomial M.
202Fun should map a single FIXNUM argument to FIXNUM. Return a sequence
203of results."
204 `(map-into ,result ,fun ,m ,@ml))
205
206(defun monom-append (m1 m2 &aux (dim (+ (length m1) (length m2))))
207 (declare (type monom m1 m2) (fixnum dim))
208 (concatenate `(monom ,dim) m1 m2))
209
210(defun monom-contract (m k)
211 "Drop the first K variables in monomial M."
212 (declare (type monom m) (fixnum k))
213 (subseq m k))
214
215(defun make-monom-variable (nvars pos &optional (power 1)
216 &aux (m (make-monom :dimension nvars)))
217 "Construct a monomial in the polynomial ring
218RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
219which represents a single variable. It assumes number of variables
220NVARS and the variable is at position POS. Optionally, the variable
221may appear raised to power POWER. "
222 (declare (type fixnum nvars pos power) (type monom m))
223 (setf (monom-elt m pos) power)
224 m)
225
226(defun monom->list (m)
227 "A human-readable representation of a monomial M as a list of exponents."
228 (declare (type monom m))
229 (coerce m 'list))
Note: See TracBrowser for help on using the repository browser.