| 1 | ;;; -*- Mode: Lisp -*-
|
|---|
| 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|---|
| 3 | ;;;
|
|---|
| 4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
|---|
| 5 | ;;;
|
|---|
| 6 | ;;; This program is free software; you can redistribute it and/or modify
|
|---|
| 7 | ;;; it under the terms of the GNU General Public License as published by
|
|---|
| 8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
|---|
| 9 | ;;; (at your option) any later version.
|
|---|
| 10 | ;;;
|
|---|
| 11 | ;;; This program is distributed in the hope that it will be useful,
|
|---|
| 12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|---|
| 13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|---|
| 14 | ;;; GNU General Public License for more details.
|
|---|
| 15 | ;;;
|
|---|
| 16 | ;;; You should have received a copy of the GNU General Public License
|
|---|
| 17 | ;;; along with this program; if not, write to the Free Software
|
|---|
| 18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|---|
| 19 | ;;;
|
|---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|---|
| 21 |
|
|---|
| 22 | (defpackage "MONOM"
|
|---|
| 23 | (:use :cl :ring)
|
|---|
| 24 | (:export "MONOM"
|
|---|
| 25 | "EXPONENT"
|
|---|
| 26 | "MONOM-DIMENSION"
|
|---|
| 27 | "MONOM-EXPONENTS"
|
|---|
| 28 | "MAKE-MONOM-VARIABLE")
|
|---|
| 29 | (:documentation
|
|---|
| 30 | "This package implements basic operations on monomials.
|
|---|
| 31 | DATA STRUCTURES: Conceptually, monomials can be represented as lists:
|
|---|
| 32 |
|
|---|
| 33 | monom: (n1 n2 ... nk) where ni are non-negative integers
|
|---|
| 34 |
|
|---|
| 35 | However, lists may be implemented as other sequence types, so the
|
|---|
| 36 | flexibility to change the representation should be maintained in the
|
|---|
| 37 | code to use general operations on sequences whenever possible. The
|
|---|
| 38 | optimization for the actual representation should be left to
|
|---|
| 39 | declarations and the compiler.
|
|---|
| 40 |
|
|---|
| 41 | EXAMPLES: Suppose that variables are x and y. Then
|
|---|
| 42 |
|
|---|
| 43 | Monom x*y^2 ---> (1 2) "))
|
|---|
| 44 |
|
|---|
| 45 | (in-package :monom)
|
|---|
| 46 |
|
|---|
| 47 | (proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
|
|---|
| 48 |
|
|---|
| 49 | (deftype exponent ()
|
|---|
| 50 | "Type of exponent in a monomial."
|
|---|
| 51 | 'fixnum)
|
|---|
| 52 |
|
|---|
| 53 | (defclass monom ()
|
|---|
| 54 | ((exponents :initarg :exponents :accessor monom-exponents
|
|---|
| 55 | :documentation "The powers of the variables."))
|
|---|
| 56 | ;; default-initargs are not needed, they are handled by SHARED-INITIALIZE
|
|---|
| 57 | ;;(:default-initargs :dimension 'foo :exponents 'bar :exponent 'baz)
|
|---|
| 58 | (:documentation
|
|---|
| 59 | "Implements a monomial, i.e. a product of powers
|
|---|
| 60 | of variables, like X*Y^2."))
|
|---|
| 61 |
|
|---|
| 62 | (defmethod print-object ((self monom) stream)
|
|---|
| 63 | (print-unreadable-object (self stream :type t :identity t)
|
|---|
| 64 | (with-accessors ((exponents monom-exponents))
|
|---|
| 65 | self
|
|---|
| 66 | (format stream "EXPONENTS=~A"
|
|---|
| 67 | exponents))))
|
|---|
| 68 |
|
|---|
| 69 | ;; The following INITIALIZE-INSTANCE method allows instance
|
|---|
| 70 | ;; initialization in a style similar to MAKE-ARRAY, e.g.
|
|---|
| 71 | ;;
|
|---|
| 72 | ;; (MAKE-INSTANCE :EXPONENTS '(1 2 3)) --> #<MONOM EXPONENTS=#(1 2 3)>
|
|---|
| 73 | ;; (MAKE-INSTANCE :DIMENSION 3) --> #<MONOM EXPONENTS=#(0 0 0)>
|
|---|
| 74 | ;; (MAKE-INSTANCE :DIMENSION 3 :EXPONENT 7) --> #<MONOM EXPONENTS=#(7 7 7)>
|
|---|
| 75 | ;;
|
|---|
| 76 | (defmethod initialize-instance :after ((self monom)
|
|---|
| 77 | &key
|
|---|
| 78 | (dimension 0 dimension-supplied-p)
|
|---|
| 79 | (exponents nil exponents-supplied-p)
|
|---|
| 80 | (exponent 0)
|
|---|
| 81 | &allow-other-keys
|
|---|
| 82 | )
|
|---|
| 83 | (cond
|
|---|
| 84 | (exponents-supplied-p
|
|---|
| 85 | (when dimension-supplied-p
|
|---|
| 86 | (warn "Ignoring initarg DIMENSION."))
|
|---|
| 87 | (let ((dim (length exponents)))
|
|---|
| 88 | (setf (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
|
|---|
| 89 | (dimension-supplied-p
|
|---|
| 90 | ;; when all exponents are to be identical
|
|---|
| 91 | (setf (slot-value self 'exponents) (make-array (list dimension)
|
|---|
| 92 | :initial-element exponent
|
|---|
| 93 | :element-type 'exponent)))
|
|---|
| 94 | (t
|
|---|
| 95 | (error "Initarg DIMENSION or EXPONENTS must be supplied."))))
|
|---|
| 96 |
|
|---|
| 97 | (defmethod monom-dimension ((m monom))
|
|---|
| 98 | (length (monom-exponents m)))
|
|---|
| 99 |
|
|---|
| 100 | (defmethod r-equalp ((m1 monom) (m2 monom))
|
|---|
| 101 | "Returns T iff monomials M1 and M2 have identical
|
|---|
| 102 | EXPONENTS."
|
|---|
| 103 | (equalp (monom-exponents m1) (monom-exponents m2)))
|
|---|
| 104 |
|
|---|
| 105 | (defmethod r-coeff ((m monom))
|
|---|
| 106 | "A MONOM can be treated as a special case of TERM,
|
|---|
| 107 | where the coefficient is 1."
|
|---|
| 108 | 1)
|
|---|
| 109 |
|
|---|
| 110 | (defmethod r-elt ((m monom) index)
|
|---|
| 111 | "Return the power in the monomial M of variable number INDEX."
|
|---|
| 112 | (with-slots (exponents)
|
|---|
| 113 | m
|
|---|
| 114 | (elt exponents index)))
|
|---|
| 115 |
|
|---|
| 116 | (defmethod (setf r-elt) (new-value (m monom) index)
|
|---|
| 117 | "Return the power in the monomial M of variable number INDEX."
|
|---|
| 118 | (with-slots (exponents)
|
|---|
| 119 | m
|
|---|
| 120 | (setf (elt exponents index) new-value)))
|
|---|
| 121 |
|
|---|
| 122 | (defmethod r-total-degree ((m monom) &optional (start 0) (end (monom-dimension m)))
|
|---|
| 123 | "Return the todal degree of a monomoal M. Optinally, a range
|
|---|
| 124 | of variables may be specified with arguments START and END."
|
|---|
| 125 | (declare (type fixnum start end))
|
|---|
| 126 | (with-slots (exponents)
|
|---|
| 127 | m
|
|---|
| 128 | (reduce #'+ exponents :start start :end end)))
|
|---|
| 129 |
|
|---|
| 130 |
|
|---|
| 131 | (defmethod r-sugar ((m monom) &aux (start 0) (end (monom-dimension m)))
|
|---|
| 132 | "Return the sugar of a monomial M. Optinally, a range
|
|---|
| 133 | of variables may be specified with arguments START and END."
|
|---|
| 134 | (declare (type fixnum start end))
|
|---|
| 135 | (r-total-degree m start end))
|
|---|
| 136 |
|
|---|
| 137 | (defmethod multiply-by ((self monom) (other monom))
|
|---|
| 138 | (with-slots ((exponents1 exponents) (dimension1 dimension))
|
|---|
| 139 | self
|
|---|
| 140 | (with-slots ((exponents2 exponents) (dimension2 dimension))
|
|---|
| 141 | other
|
|---|
| 142 | (unless (= dimension1 dimension2)
|
|---|
| 143 | (error "Incompatible dimensions: ~A and ~A.~%" dimension1 dimension2))
|
|---|
| 144 | (map-into exponents1 #'+ exponents1 exponents2)))
|
|---|
| 145 | self)
|
|---|
| 146 |
|
|---|
| 147 | (defmethod divide-by ((self monom) (other monom))
|
|---|
| 148 | (with-slots ((exponents1 exponents) (dimension1 dimension))
|
|---|
| 149 | self
|
|---|
| 150 | (with-slots ((exponents2 exponents) (dimension2 dimension))
|
|---|
| 151 | other
|
|---|
| 152 | (unless (= dimension1 dimension2)
|
|---|
| 153 | (error "Incompatible dimensions: ~A and ~A.~%" dimension1 dimension2))
|
|---|
| 154 | (map-into exponents1 #'- exponents1 exponents2)))
|
|---|
| 155 | self)
|
|---|
| 156 |
|
|---|
| 157 | (defmethod copy-instance :around ((object monom) &rest initargs &key &allow-other-keys)
|
|---|
| 158 | "An :AROUNT method for COPY-INSTANCE. The primary method is a shallow copy,
|
|---|
| 159 | while for monomials we typically need a fresh copy of the
|
|---|
| 160 | exponents."
|
|---|
| 161 | (declare (ignore object initargs))
|
|---|
| 162 | (let ((copy (call-next-method)))
|
|---|
| 163 | (setf (monom-exponents copy) (copy-seq (monom-exponents copy)))
|
|---|
| 164 | copy))
|
|---|
| 165 |
|
|---|
| 166 | (defmethod r* ((m1 monom) (m2 monom))
|
|---|
| 167 | "Non-destructively multiply monomial M1 by M2."
|
|---|
| 168 | (multiply-by (copy-instance m1) (copy-instance m2)))
|
|---|
| 169 |
|
|---|
| 170 | (defmethod r/ ((m1 monom) (m2 monom))
|
|---|
| 171 | "Non-destructively divide monomial M1 by monomial M2."
|
|---|
| 172 | (divide-by (copy-instance m1) (copy-instance m2)))
|
|---|
| 173 |
|
|---|
| 174 | (defmethod r-divides-p ((m1 monom) (m2 monom))
|
|---|
| 175 | "Returns T if monomial M1 divides monomial M2, NIL otherwise."
|
|---|
| 176 | (with-slots ((exponents1 exponents))
|
|---|
| 177 | m1
|
|---|
| 178 | (with-slots ((exponents2 exponents))
|
|---|
| 179 | m2
|
|---|
| 180 | (every #'<= exponents1 exponents2))))
|
|---|
| 181 |
|
|---|
| 182 |
|
|---|
| 183 | (defmethod r-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
|
|---|
| 184 | "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
|
|---|
| 185 | (every #'(lambda (x y z) (<= x (max y z)))
|
|---|
| 186 | m1 m2 m3))
|
|---|
| 187 |
|
|---|
| 188 |
|
|---|
| 189 | (defmethod r-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
|
|---|
| 190 | "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
|
|---|
| 191 | (declare (type monom m1 m2 m3 m4))
|
|---|
| 192 | (every #'(lambda (x y z w) (<= (max x y) (max z w)))
|
|---|
| 193 | m1 m2 m3 m4))
|
|---|
| 194 |
|
|---|
| 195 | (defmethod r-lcm-equal-lcm-p (m1 m2 m3 m4)
|
|---|
| 196 | "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
|
|---|
| 197 | (with-slots ((exponents1 exponents))
|
|---|
| 198 | m1
|
|---|
| 199 | (with-slots ((exponents2 exponents))
|
|---|
| 200 | m2
|
|---|
| 201 | (with-slots ((exponents3 exponents))
|
|---|
| 202 | m3
|
|---|
| 203 | (with-slots ((exponents4 exponents))
|
|---|
| 204 | m4
|
|---|
| 205 | (every
|
|---|
| 206 | #'(lambda (x y z w) (= (max x y) (max z w)))
|
|---|
| 207 | exponents1 exponents2 exponents3 exponents4))))))
|
|---|
| 208 |
|
|---|
| 209 | (defmethod r-divisible-by-p ((m1 monom) (m2 monom))
|
|---|
| 210 | "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
|
|---|
| 211 | (with-slots ((exponents1 exponents))
|
|---|
| 212 | m1
|
|---|
| 213 | (with-slots ((exponents2 exponents))
|
|---|
| 214 | m2
|
|---|
| 215 | (every #'>= exponents1 exponents2))))
|
|---|
| 216 |
|
|---|
| 217 | (defmethod r-rel-prime-p ((m1 monom) (m2 monom))
|
|---|
| 218 | "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
|
|---|
| 219 | (with-slots ((exponents1 exponents))
|
|---|
| 220 | m1
|
|---|
| 221 | (with-slots ((exponents2 exponents))
|
|---|
| 222 | m2
|
|---|
| 223 | (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
|
|---|
| 224 |
|
|---|
| 225 |
|
|---|
| 226 | (defmethod r-lcm ((m1 monom) (m2 monom))
|
|---|
| 227 | "Returns least common multiple of monomials M1 and M2."
|
|---|
| 228 | (with-slots ((exponents1 exponents) (dimension1 dimension))
|
|---|
| 229 | m1
|
|---|
| 230 | (with-slots ((exponents2 exponents))
|
|---|
| 231 | m2
|
|---|
| 232 | (let* ((exponents (copy-seq exponents1))
|
|---|
| 233 | (dimension dimension1))
|
|---|
| 234 | (map-into exponents #'max exponents1 exponents2)
|
|---|
| 235 | (make-instance 'monom :dimension dimension :exponents exponents)))))
|
|---|
| 236 |
|
|---|
| 237 |
|
|---|
| 238 | (defmethod r-gcd ((m1 monom) (m2 monom))
|
|---|
| 239 | "Returns greatest common divisor of monomials M1 and M2."
|
|---|
| 240 | (with-slots ((exponents1 exponents) (dimension1 dimension))
|
|---|
| 241 | m1
|
|---|
| 242 | (with-slots ((exponents2 exponents))
|
|---|
| 243 | m2
|
|---|
| 244 | (let* ((exponents (copy-seq exponents1))
|
|---|
| 245 | (dimension dimension1))
|
|---|
| 246 | (map-into exponents #'min exponents1 exponents2)
|
|---|
| 247 | (make-instance 'monom :dimension dimension :exponents exponents)))))
|
|---|
| 248 |
|
|---|
| 249 | (defmethod r-depends-p ((m monom) k)
|
|---|
| 250 | "Return T if the monomial M depends on variable number K."
|
|---|
| 251 | (declare (type fixnum k))
|
|---|
| 252 | (with-slots (exponents)
|
|---|
| 253 | m
|
|---|
| 254 | (plusp (elt exponents k))))
|
|---|
| 255 |
|
|---|
| 256 | (defmethod left-tensor-product-by ((self monom) (other monom))
|
|---|
| 257 | (with-slots ((exponents1 exponents) (dimension1 dimension))
|
|---|
| 258 | self
|
|---|
| 259 | (with-slots ((exponents2 exponents) (dimension2 dimension))
|
|---|
| 260 | other
|
|---|
| 261 | (setf dimension1 (+ dimension1 dimension2)
|
|---|
| 262 | exponents1 (concatenate 'vector exponents2 exponents1))))
|
|---|
| 263 | self)
|
|---|
| 264 |
|
|---|
| 265 | (defmethod right-tensor-product-by ((self monom) (other monom))
|
|---|
| 266 | (with-slots ((exponents1 exponents) (dimension1 dimension))
|
|---|
| 267 | self
|
|---|
| 268 | (with-slots ((exponents2 exponents) (dimension2 dimension))
|
|---|
| 269 | other
|
|---|
| 270 | (setf dimension1 (+ dimension1 dimension2)
|
|---|
| 271 | exponents1 (concatenate 'vector exponents1 exponents2))))
|
|---|
| 272 | self)
|
|---|
| 273 |
|
|---|
| 274 | (defmethod left-contract ((self monom) k)
|
|---|
| 275 | "Drop the first K variables in monomial M."
|
|---|
| 276 | (declare (fixnum k))
|
|---|
| 277 | (with-slots (dimension exponents)
|
|---|
| 278 | self
|
|---|
| 279 | (setf dimension (- dimension k)
|
|---|
| 280 | exponents (subseq exponents k)))
|
|---|
| 281 | self)
|
|---|
| 282 |
|
|---|
| 283 | (defun make-monom-variable (nvars pos &optional (power 1)
|
|---|
| 284 | &aux (m (make-instance 'monom :dimension nvars)))
|
|---|
| 285 | "Construct a monomial in the polynomial ring
|
|---|
| 286 | RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
|
|---|
| 287 | which represents a single variable. It assumes number of variables
|
|---|
| 288 | NVARS and the variable is at position POS. Optionally, the variable
|
|---|
| 289 | may appear raised to power POWER. "
|
|---|
| 290 | (declare (type fixnum nvars pos power) (type monom m))
|
|---|
| 291 | (with-slots (exponents)
|
|---|
| 292 | m
|
|---|
| 293 | (setf (elt exponents pos) power)
|
|---|
| 294 | m))
|
|---|
| 295 |
|
|---|
| 296 | (defmethod r->list ((m monom))
|
|---|
| 297 | "A human-readable representation of a monomial M as a list of exponents."
|
|---|
| 298 | (coerce (monom-exponents m) 'list))
|
|---|
| 299 |
|
|---|
| 300 | (defmethod r-dimension ((self monom))
|
|---|
| 301 | (monom-dimension self))
|
|---|
| 302 |
|
|---|
| 303 | (defmethod r-exponents ((self monom))
|
|---|
| 304 | (monom-exponents self))
|
|---|