close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 2814

Last change on this file since 2814 was 2814, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 9.8 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "MONOM"
23 (:use :cl :ring)
24 (:export "MONOM"
25 "EXPONENT"
26 "MONOM-DIMENSION"
27 "MONOM-EXPONENTS"
28 "MONOM-EQUALP"
29 "MAKE-MONOM-VARIABLE")
30 (:documentation
31 "This package implements basic operations on monomials.
32DATA STRUCTURES: Conceptually, monomials can be represented as lists:
33
34 monom: (n1 n2 ... nk) where ni are non-negative integers
35
36However, lists may be implemented as other sequence types, so the
37flexibility to change the representation should be maintained in the
38code to use general operations on sequences whenever possible. The
39optimization for the actual representation should be left to
40declarations and the compiler.
41
42EXAMPLES: Suppose that variables are x and y. Then
43
44 Monom x*y^2 ---> (1 2) "))
45
46(in-package :monom)
47
48(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
49
50(deftype exponent ()
51 "Type of exponent in a monomial."
52 'fixnum)
53
54(defclass monom ()
55 ((dimension :initarg :dimension :accessor monom-dimension)
56 (exponents :initarg :exponents :accessor monom-exponents))
57 (:default-initargs :dimension nil :exponents nil :exponent nil)
58 (:documentation
59 "Implements a monomial, i.e. a product of powers
60of variables, like X*Y^2."))
61
62(defmethod print-object ((self monom) stream)
63 (format stream "#<MONOM DIMENSION=~A EXPONENTS=~A>"
64 (monom-dimension self)
65 (monom-exponents self)))
66
67(defmethod shared-initialize :after ((self monom) slot-names
68 &key
69 dimension
70 exponents
71 exponent
72 &allow-other-keys
73 )
74 (if (eq slot-names t) (setf slot-names '(dimension exponents)))
75 (dolist (slot-name slot-names)
76 (case slot-name
77 (dimension
78 (cond (dimension
79 (setf (slot-value self 'dimension) dimension))
80 (exponents
81 (setf (slot-value self 'dimension) (length exponents)))
82 (t
83 (error "DIMENSION or EXPONENTS must not be NIL"))))
84 (exponents
85 (cond
86 ;; when exponents are supplied
87 (exponents
88 (let ((dim (length exponents)))
89 (when (and dimension (/= dimension dim))
90 (error "EXPONENTS must have length DIMENSION"))
91 (setf (slot-value self 'dimension) dim
92 (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
93 ;; when all exponents are to be identical
94 (t
95 (let ((dim (slot-value self 'dimension)))
96 (setf (slot-value self 'exponents)
97 (make-array (list dim) :initial-element (or exponent 0)
98 :element-type 'exponent)))))))))
99
100(defun monom-clone (m)
101 (make-instance 'monom
102 :dimension (monom-dimension m)
103 :exponents (copy-seq (monom-exponents m))))
104
105(defun monom-equalp (m1 m2)
106 "Returns T iff monomials M1 and M2 have identical
107EXPONENTS."
108 (declare (type monom m1 m2))
109 (equalp (monom-exponents m1) (monom-exponents m2)))
110
111(defmethod r-coeff ((m monom))
112 "A MONOM can be treated as a special case of TERM,
113where the coefficient is 1."
114 1)
115
116(defmethod r-elt ((m monom) index)
117 "Return the power in the monomial M of variable number INDEX."
118 (with-slots (exponents)
119 m
120 (elt exponents index)))
121
122(defmethod (setf r-elt) (new-value (m monom) index)
123 "Return the power in the monomial M of variable number INDEX."
124 (with-slots (exponents)
125 m
126 (setf (elt exponents index) new-value)))
127
128(defmethod r-total-degree ((m monom) &optional (start 0) (end (monom-dimension m)))
129 "Return the todal degree of a monomoal M. Optinally, a range
130of variables may be specified with arguments START and END."
131 (declare (type fixnum start end))
132 (with-slots (exponents)
133 m
134 (reduce #'+ exponents :start start :end end)))
135
136
137(defmethod r-sugar ((m monom) &aux (start 0) (end (monom-dimension m)))
138 "Return the sugar of a monomial M. Optinally, a range
139of variables may be specified with arguments START and END."
140 (declare (type fixnum start end))
141 (r-total-degree m start end))
142
143(defmethod multiply-by ((self monom) (other monom))
144 (with-slots ((exponents1 exponents) (dimension1 dimension))
145 self
146 (with-slots ((exponents2 exponents) (dimension2 dimension))
147 other
148 (unless (= dimension1 dimension2)
149 (error "Incompatible dimensions: ~A and ~A.~%" dimension1 dimension2))
150 (map-into exponents1 #'+ exponents1 exponents2)))
151 self)
152
153(defmethod r/ ((m1 monom) (m2 monom))
154 "Divide monomial M1 by monomial M2."
155 (with-slots ((exponents1 exponents) (dimension1 dimension))
156 m1
157 (with-slots ((exponents2 exponents))
158 m2
159 (let* ((exponents (copy-seq exponents1))
160 (dimension dimension1))
161 (map-into exponents #'- exponents1 exponents2)
162 (make-instance 'monom :dimension dimension :exponents exponents)))))
163
164(defmethod r-divides-p ((m1 monom) (m2 monom))
165 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
166 (with-slots ((exponents1 exponents))
167 m1
168 (with-slots ((exponents2 exponents))
169 m2
170 (every #'<= exponents1 exponents2))))
171
172
173(defmethod r-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
174 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
175 (every #'(lambda (x y z) (<= x (max y z)))
176 m1 m2 m3))
177
178
179(defmethod r-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
180 "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
181 (declare (type monom m1 m2 m3 m4))
182 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
183 m1 m2 m3 m4))
184
185(defmethod r-lcm-equal-lcm-p (m1 m2 m3 m4)
186 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
187 (with-slots ((exponents1 exponents))
188 m1
189 (with-slots ((exponents2 exponents))
190 m2
191 (with-slots ((exponents3 exponents))
192 m3
193 (with-slots ((exponents4 exponents))
194 m4
195 (every
196 #'(lambda (x y z w) (= (max x y) (max z w)))
197 exponents1 exponents2 exponents3 exponents4))))))
198
199(defmethod r-divisible-by-p ((m1 monom) (m2 monom))
200 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
201 (with-slots ((exponents1 exponents))
202 m1
203 (with-slots ((exponents2 exponents))
204 m2
205 (every #'>= exponents1 exponents2))))
206
207(defmethod r-rel-prime-p ((m1 monom) (m2 monom))
208 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
209 (with-slots ((exponents1 exponents))
210 m1
211 (with-slots ((exponents2 exponents))
212 m2
213 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
214
215
216(defmethod r-equalp ((m1 monom) (m2 monom))
217 "Returns T if two monomials M1 and M2 are equal."
218 (monom-equalp m1 m2))
219
220(defmethod r-lcm ((m1 monom) (m2 monom))
221 "Returns least common multiple of monomials M1 and M2."
222 (with-slots ((exponents1 exponents) (dimension1 dimension))
223 m1
224 (with-slots ((exponents2 exponents))
225 m2
226 (let* ((exponents (copy-seq exponents1))
227 (dimension dimension1))
228 (map-into exponents #'max exponents1 exponents2)
229 (make-instance 'monom :dimension dimension :exponents exponents)))))
230
231
232(defmethod r-gcd ((m1 monom) (m2 monom))
233 "Returns greatest common divisor of monomials M1 and M2."
234 (with-slots ((exponents1 exponents) (dimension1 dimension))
235 m1
236 (with-slots ((exponents2 exponents))
237 m2
238 (let* ((exponents (copy-seq exponents1))
239 (dimension dimension1))
240 (map-into exponents #'min exponents1 exponents2)
241 (make-instance 'monom :dimension dimension :exponents exponents)))))
242
243(defmethod r-depends-p ((m monom) k)
244 "Return T if the monomial M depends on variable number K."
245 (declare (type fixnum k))
246 (with-slots (exponents)
247 m
248 (plusp (elt exponents k))))
249
250(defmethod r-tensor-product ((m1 monom) (m2 monom))
251 (with-slots ((exponents1 exponents) (dimension1 dimension))
252 m1
253 (with-slots ((exponents2 exponents) (dimension2 dimension))
254 m2
255 (make-instance 'monom
256 :dimension (+ dimension1 dimension2)
257 :exponents (concatenate 'vector exponents1 exponents2)))))
258
259(defmethod r-contract ((m monom) k)
260 "Drop the first K variables in monomial M."
261 (declare (fixnum k))
262 (with-slots (dimension exponents)
263 m
264 (setf dimension (- dimension k)
265 exponents (subseq exponents k))))
266
267(defun make-monom-variable (nvars pos &optional (power 1)
268 &aux (m (make-instance 'monom :dimension nvars)))
269 "Construct a monomial in the polynomial ring
270RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
271which represents a single variable. It assumes number of variables
272NVARS and the variable is at position POS. Optionally, the variable
273may appear raised to power POWER. "
274 (declare (type fixnum nvars pos power) (type monom m))
275 (with-slots (exponents)
276 m
277 (setf (elt exponents pos) power)
278 m))
279
280(defmethod r->list ((m monom))
281 "A human-readable representation of a monomial M as a list of exponents."
282 (coerce (monom-exponents m) 'list))
283
284(defmethod r-dimension ((self monom))
285 (monom-dimension self))
286
287(defmethod r-exponents ((self monom))
288 (monom-exponents self))
Note: See TracBrowser for help on using the repository browser.