1 | ;;; -*- Mode: Lisp -*-
|
---|
2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
3 | ;;;
|
---|
4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
5 | ;;;
|
---|
6 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
7 | ;;; it under the terms of the GNU General Public License as published by
|
---|
8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
9 | ;;; (at your option) any later version.
|
---|
10 | ;;;
|
---|
11 | ;;; This program is distributed in the hope that it will be useful,
|
---|
12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | ;;; GNU General Public License for more details.
|
---|
15 | ;;;
|
---|
16 | ;;; You should have received a copy of the GNU General Public License
|
---|
17 | ;;; along with this program; if not, write to the Free Software
|
---|
18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
19 | ;;;
|
---|
20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
21 |
|
---|
22 | ;;----------------------------------------------------------------
|
---|
23 | ;; This package implements BASIC OPERATIONS ON MONOMIALS
|
---|
24 | ;;----------------------------------------------------------------
|
---|
25 | ;; DATA STRUCTURES: Conceptually, monomials can be represented as lists:
|
---|
26 | ;;
|
---|
27 | ;; monom: (n1 n2 ... nk) where ni are non-negative integers
|
---|
28 | ;;
|
---|
29 | ;; However, lists may be implemented as other sequence types,
|
---|
30 | ;; so the flexibility to change the representation should be
|
---|
31 | ;; maintained in the code to use general operations on sequences
|
---|
32 | ;; whenever possible. The optimization for the actual representation
|
---|
33 | ;; should be left to declarations and the compiler.
|
---|
34 | ;;----------------------------------------------------------------
|
---|
35 | ;; EXAMPLES: Suppose that variables are x and y. Then
|
---|
36 | ;;
|
---|
37 | ;; Monom x*y^2 ---> (1 2)
|
---|
38 | ;;
|
---|
39 | ;;----------------------------------------------------------------
|
---|
40 |
|
---|
41 | (defpackage "MONOM"
|
---|
42 | (:use :cl :ring)
|
---|
43 | (:export "MONOM"
|
---|
44 | "EXPONENT"
|
---|
45 | "MAKE-MONOM"
|
---|
46 | "MONOM-DIMENSION"
|
---|
47 | "MONOM-EXPONENTS"
|
---|
48 | "MAKE-MONOM-VARIABLE"))
|
---|
49 |
|
---|
50 | (in-package :monom)
|
---|
51 |
|
---|
52 | (proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
|
---|
53 |
|
---|
54 | (deftype exponent ()
|
---|
55 | "Type of exponent in a monomial."
|
---|
56 | 'fixnum)
|
---|
57 |
|
---|
58 | (defclass monom ()
|
---|
59 | ((dimension :initarg :dimension :accessor monom-dimension)
|
---|
60 | (exponents :initarg :exponents :accessor monom-exponents))
|
---|
61 | (:default-initargs :dim 0 :exponents nil))
|
---|
62 |
|
---|
63 | (defmethod print-object ((m monom) stream)
|
---|
64 | (princ (slot-value m 'exponents) stream))
|
---|
65 |
|
---|
66 | ;; If a monomial is redefined as structure with slot EXPONENTS, the function
|
---|
67 | ;; below can be the BOA constructor.
|
---|
68 | (defun make-monom (&key
|
---|
69 | (dimension nil dimension-suppied-p)
|
---|
70 | (initial-exponents nil initial-exponents-supplied-p)
|
---|
71 | (initial-exponent nil initial-exponent-supplied-p)
|
---|
72 | &aux
|
---|
73 | (dim (cond (dimension-suppied-p dimension)
|
---|
74 | (initial-exponents-supplied-p (length initial-exponents))
|
---|
75 | (t (error "You must provide DIMENSION or INITIAL-EXPONENTS"))))
|
---|
76 | (exponents (cond
|
---|
77 | ;; when exponents are supplied
|
---|
78 | (initial-exponents-supplied-p
|
---|
79 | (when (and dimension-suppied-p (/= dimension (length initial-exponents)))
|
---|
80 | (error "INITIAL-EXPONENTS must have length DIMENSION"))
|
---|
81 | (make-array (list dim) :initial-contents initial-exponents
|
---|
82 | :element-type 'exponent))
|
---|
83 | ;; when all exponents are to be identical
|
---|
84 | (initial-exponent-supplied-p
|
---|
85 | (make-array (list dim) :initial-element initial-exponent
|
---|
86 | :element-type 'exponent))
|
---|
87 | ;; otherwise, all exponents are zero
|
---|
88 | (t
|
---|
89 | (make-array (list dim) :element-type 'exponent :initial-element 0)))))
|
---|
90 | "A constructor (factory) of monomials. If DIMENSION is given, a sequence of
|
---|
91 | DIMENSION elements of type EXPONENT is constructed, where individual
|
---|
92 | elements are the value of INITIAL-EXPONENT, which defaults to 0.
|
---|
93 | Alternatively, all elements may be specified as a list
|
---|
94 | INITIAL-EXPONENTS."
|
---|
95 | (make-instance 'monom :dimension dim :exponents exponents))
|
---|
96 |
|
---|
97 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
98 | ;;
|
---|
99 | ;; Operations on monomials
|
---|
100 | ;;
|
---|
101 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
102 |
|
---|
103 | (defmethod r-dimension ((m monom))
|
---|
104 | (monom-dimension m))
|
---|
105 |
|
---|
106 | (defmethod r-elt ((m monom) index)
|
---|
107 | "Return the power in the monomial M of variable number INDEX."
|
---|
108 | (with-slots (exponents)
|
---|
109 | m
|
---|
110 | (elt exponents index)))
|
---|
111 |
|
---|
112 | (defmethod (setf r-elt) (new-value (m monom) index)
|
---|
113 | "Return the power in the monomial M of variable number INDEX."
|
---|
114 | (with-slots (exponents)
|
---|
115 | m
|
---|
116 | (setf (elt exponents index) new-value)))
|
---|
117 |
|
---|
118 | (defmethod r-total-degree ((m monom) &optional (start 0) (end (r-dimension m)))
|
---|
119 | "Return the todal degree of a monomoal M. Optinally, a range
|
---|
120 | of variables may be specified with arguments START and END."
|
---|
121 | (declare (type fixnum start end))
|
---|
122 | (with-slots (exponents)
|
---|
123 | m
|
---|
124 | (reduce #'+ exponents :start start :end end)))
|
---|
125 |
|
---|
126 |
|
---|
127 | (defmethod r-sugar ((m monom) &aux (start 0) (end (r-dimension m)))
|
---|
128 | "Return the sugar of a monomial M. Optinally, a range
|
---|
129 | of variables may be specified with arguments START and END."
|
---|
130 | (declare (type fixnum start end))
|
---|
131 | (r-total-degree m start end))
|
---|
132 |
|
---|
133 | (defmethod r* ((m1 monom) (m2 monom))
|
---|
134 | "Multiply monomial M1 by monomial M2."
|
---|
135 | (with-slots ((exponents1 exponents) dimension)
|
---|
136 | m1
|
---|
137 | (with-slots ((exponents2 exponents))
|
---|
138 | m2
|
---|
139 | (let* ((exponents (copy-seq exponents1)))
|
---|
140 | (map-into exponents #'+ exponents1 exponents2)
|
---|
141 | (make-instance 'monom :dimension dimension :exponents exponents)))))
|
---|
142 |
|
---|
143 |
|
---|
144 |
|
---|
145 | (defmethod r/ ((m1 monom) (m2 monom))
|
---|
146 | "Divide monomial M1 by monomial M2."
|
---|
147 | (with-slots ((exponents1 exponents))
|
---|
148 | m1
|
---|
149 | (with-slots ((exponents2 exponents))
|
---|
150 | m2
|
---|
151 | (let* ((exponents (copy-seq exponents1))
|
---|
152 | (dimension (reduce #'+ exponents)))
|
---|
153 | (map-into exponents #'- exponents1 exponents2)
|
---|
154 | (make-instance 'monom :dimension dimension :exponents exponents)))))
|
---|
155 |
|
---|
156 | (defmethod r-divides-p ((m1 monom) (m2 monom))
|
---|
157 | "Returns T if monomial M1 divides monomial M2, NIL otherwise."
|
---|
158 | (with-slots ((exponents1 exponents))
|
---|
159 | m1
|
---|
160 | (with-slots ((exponents2 exponents))
|
---|
161 | m2
|
---|
162 | (every #'<= exponents1 exponents2))))
|
---|
163 |
|
---|
164 |
|
---|
165 | (defmethod r-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
|
---|
166 | "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
|
---|
167 | (every #'(lambda (x y z) (<= x (max y z)))
|
---|
168 | m1 m2 m3))
|
---|
169 |
|
---|
170 |
|
---|
171 | (defmethod r-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
|
---|
172 | "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
|
---|
173 | (declare (type monom m1 m2 m3 m4))
|
---|
174 | (every #'(lambda (x y z w) (<= (max x y) (max z w)))
|
---|
175 | m1 m2 m3 m4))
|
---|
176 |
|
---|
177 | (defmethod r-lcm-equal-lcm-p (m1 m2 m3 m4)
|
---|
178 | "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
|
---|
179 | (with-slots ((exponents1 exponents))
|
---|
180 | m1
|
---|
181 | (with-slots ((exponents2 exponents))
|
---|
182 | m2
|
---|
183 | (with-slots ((exponents3 exponents))
|
---|
184 | m3
|
---|
185 | (with-slots ((exponents4 exponents))
|
---|
186 | m4
|
---|
187 | (every
|
---|
188 | #'(lambda (x y z w) (= (max x y) (max z w)))
|
---|
189 | exponents1 exponents2 exponents3 exponents4))))))
|
---|
190 |
|
---|
191 | (defmethod r-divisible-by-p ((m1 monom) (m2 monom))
|
---|
192 | "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
|
---|
193 | (with-slots ((exponents1 exponents))
|
---|
194 | m1
|
---|
195 | (with-slots ((exponents2 exponents))
|
---|
196 | m2
|
---|
197 | (every #'>= exponents1 exponents2))))
|
---|
198 |
|
---|
199 | (defmethod r-rel-prime-p ((m1 monom) (m2 monom))
|
---|
200 | "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
|
---|
201 | (with-slots ((exponents1 exponents))
|
---|
202 | m1
|
---|
203 | (with-slots ((exponents2 exponents))
|
---|
204 | m2
|
---|
205 | (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
|
---|
206 |
|
---|
207 |
|
---|
208 | (defmethod r-equalp ((m1 monom) (m2 monom))
|
---|
209 | "Returns T if two monomials M1 and M2 are equal."
|
---|
210 | (with-slots ((exponents1 exponents))
|
---|
211 | m1
|
---|
212 | (with-slots ((exponents2 exponents))
|
---|
213 | m2
|
---|
214 | (every #'= exponents1 exponents2))))
|
---|
215 |
|
---|
216 | (defmethod r-lcm ((m1 monom) (m2 monom))
|
---|
217 | "Returns least common multiple of monomials M1 and M2."
|
---|
218 | (with-slots ((exponents1 exponents))
|
---|
219 | m1
|
---|
220 | (with-slots ((exponents2 exponents))
|
---|
221 | m2
|
---|
222 | (let* ((exponents (copy-seq exponents1))
|
---|
223 | (dimension (reduce #'+ exponents)))
|
---|
224 | (map-into exponents #'max exponents1 exponents2)
|
---|
225 | (make-instance 'monom :dim dimension :exponents exponents)))))
|
---|
226 |
|
---|
227 |
|
---|
228 | (defmethod r-gcd ((m1 monom) (m2 monom))
|
---|
229 | "Returns greatest common divisor of monomials M1 and M2."
|
---|
230 | (with-slots ((exponents1 exponents))
|
---|
231 | m1
|
---|
232 | (with-slots ((exponents2 exponents))
|
---|
233 | m2
|
---|
234 | (let* ((exponents (copy-seq exponents1))
|
---|
235 | (dimension (reduce #'+ exponents)))
|
---|
236 | (map-into exponents #'min exponents1 exponents2)
|
---|
237 | (make-instance 'monom :dim dimension :exponents exponents)))))
|
---|
238 |
|
---|
239 | (defmethod r-depends-p ((m monom) k)
|
---|
240 | "Return T if the monomial M depends on variable number K."
|
---|
241 | (declare (type fixnum k))
|
---|
242 | (with-slots (exponents)
|
---|
243 | m
|
---|
244 | (plusp (elt exponents k))))
|
---|
245 |
|
---|
246 | (defmethod r-tensor-product ((m1 monom) (m2 monom)
|
---|
247 | &aux (dimension (+ (r-dimension m1) (r-dimension m2))))
|
---|
248 | (declare (fixnum dimension))
|
---|
249 | (with-slots ((exponents1 exponents))
|
---|
250 | m1
|
---|
251 | (with-slots ((exponents2 exponents))
|
---|
252 | m2
|
---|
253 | (make-instance 'monom
|
---|
254 | :dimension dimension
|
---|
255 | :exponents (concatenate 'vector exponents1 exponents2)))))
|
---|
256 |
|
---|
257 | (defmethod r-contract ((m monom) k)
|
---|
258 | "Drop the first K variables in monomial M."
|
---|
259 | (declare (fixnum k))
|
---|
260 | (with-slots (dim exponents)
|
---|
261 | m
|
---|
262 | (setf dim (- dim k)
|
---|
263 | exponents (subseq exponents k))))
|
---|
264 |
|
---|
265 | (defun make-monom-variable (nvars pos &optional (power 1)
|
---|
266 | &aux (m (make-monom :dimension nvars)))
|
---|
267 | "Construct a monomial in the polynomial ring
|
---|
268 | RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
|
---|
269 | which represents a single variable. It assumes number of variables
|
---|
270 | NVARS and the variable is at position POS. Optionally, the variable
|
---|
271 | may appear raised to power POWER. "
|
---|
272 | (declare (type fixnum nvars pos power) (type monom m))
|
---|
273 | (with-slots (exponents)
|
---|
274 | m
|
---|
275 | (setf (elt exponents pos) power)
|
---|
276 | m))
|
---|
277 |
|
---|
278 | (defmethod r->list ((m monom))
|
---|
279 | "A human-readable representation of a monomial M as a list of exponents."
|
---|
280 | (coerce (monom-exponents m) 'list))
|
---|