close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 4184

Last change on this file since 4184 was 4168, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 24.6 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "MONOM"
23 (:use :cl :utils :copy)
24 (:export "MONOM"
25 "TERM"
26 "EXPONENT"
27 "MONOM-DIMENSION"
28 "MONOM-EXPONENTS"
29 "UNIVERSAL-EQUALP"
30 "MONOM-ELT"
31 "TOTAL-DEGREE"
32 "SUGAR"
33 "MULTIPLY-BY"
34 "DIVIDE-BY"
35 "DIVIDE"
36 "MULTIPLY"
37 "DIVIDES-P"
38 "DIVIDES-LCM-P"
39 "LCM-DIVIDES-LCM-P"
40 "LCM-EQUAL-LCM-P"
41 "DIVISIBLE-BY-P"
42 "REL-PRIME-P"
43 "UNIVERSAL-LCM"
44 "UNIVERSAL-GCD"
45 "DEPENDS-P"
46 "LEFT-TENSOR-PRODUCT-BY"
47 "RIGHT-TENSOR-PRODUCT-BY"
48 "LEFT-CONTRACT"
49 "MAKE-MONOM-VARIABLE"
50 "MAKE-MONOM-CONSTANT"
51 "MAKE-TERM-CONSTANT"
52 "->LIST"
53 "->SEXP"
54 "LEX>"
55 "GRLEX>"
56 "REVLEX>"
57 "GREVLEX>"
58 "INVLEX>"
59 "REVERSE-MONOMIAL-ORDER"
60 "MAKE-ELIMINATION-ORDER-FACTORY"
61 "TERM-COEFF"
62 "UNARY-MINUS"
63 "UNARY-INVERSE"
64 "UNIVERSAL-ZEROP")
65 (:documentation
66 "This package implements basic operations on monomials, including
67various monomial orders.
68
69DATA STRUCTURES: Conceptually, monomials can be represented as lists:
70
71 monom: (n1 n2 ... nk) where ni are non-negative integers
72
73However, lists may be implemented as other sequence types, so the
74flexibility to change the representation should be maintained in the
75code to use general operations on sequences whenever possible. The
76optimization for the actual representation should be left to
77declarations and the compiler.
78
79EXAMPLES: Suppose that variables are x and y. Then
80
81 Monom x*y^2 ---> (1 2) "))
82
83(in-package :monom)
84
85(proclaim '(optimize (speed 0) (space 0) (safety 3) (debug 0)))
86
87(deftype exponent ()
88 "Type of exponent in a monomial."
89 'fixnum)
90
91(defclass monom ()
92 ((exponents :initarg :exponents :accessor monom-exponents
93 :documentation "The powers of the variables."))
94 ;; default-initargs are not needed, they are handled by SHARED-INITIALIZE
95 ;;(:default-initargs :dimension 'foo :exponents 'bar :exponent 'baz)
96 (:documentation
97 "Implements a monomial, i.e. a product of powers
98of variables, like X*Y^2."))
99
100(defmethod print-object ((self monom) stream)
101 (print-unreadable-object (self stream :type t :identity t)
102 (with-accessors ((exponents monom-exponents))
103 self
104 (format stream "EXPONENTS=~A"
105 exponents))))
106
107(defmethod initialize-instance :after ((self monom)
108 &key
109 (dimension 0 dimension-supplied-p)
110 (exponents nil exponents-supplied-p)
111 (exponent 0)
112 &allow-other-keys
113 )
114 "The following INITIALIZE-INSTANCE method allows instance initialization
115of a MONOM in a style similar to MAKE-ARRAY, e.g.:
116
117 (MAKE-INSTANCE 'MONOM :EXPONENTS '(1 2 3)) --> #<MONOM EXPONENTS=#(1 2 3)>
118 (MAKE-INSTANCE 'MONOM :DIMENSION 3) --> #<MONOM EXPONENTS=#(0 0 0)>
119 (MAKE-INSTANCE 'MONOM :DIMENSION 3 :EXPONENT 7) --> #<MONOM EXPONENTS=#(7 7 7)>
120
121If both DIMENSION and EXPONENTS are supplied, they must be compatible,
122i.e. the length of EXPONENTS must be equal DIMENSION. If EXPONENTS
123is not supplied, a monom with repeated value EXPONENT is created.
124By default EXPONENT is 0, which results in a constant monomial.
125"
126 (cond
127 (exponents-supplied-p
128 (when (and dimension-supplied-p
129 (/= dimension (length exponents)))
130 (error "EXPONENTS (~A) must have supplied length DIMENSION (~A)"
131 exponents dimension))
132 (let ((dim (length exponents)))
133 (setf (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
134 (dimension-supplied-p
135 ;; when all exponents are to be identical
136 (setf (slot-value self 'exponents) (make-array (list dimension)
137 :initial-element exponent
138 :element-type 'exponent)))
139 (t
140 (error "Initarg DIMENSION or EXPONENTS must be supplied."))))
141
142(defgeneric monom-dimension (self)
143 (:method ((self monom))
144 (length (monom-exponents self))))
145
146(defgeneric universal-equalp (object1 object2)
147 (:documentation "Returns T iff OBJECT1 and OBJECT2 are equal.")
148 (:method ((object1 cons) (object2 cons)) (every #'universal-equalp object1 object2))
149 (:method ((object1 number) (object2 number)) (= object1 object2))
150 (:method ((m1 monom) (m2 monom))
151 "Returns T iff monomials M1 and M2 have identical EXPONENTS."
152 (equalp (monom-exponents m1) (monom-exponents m2))))
153
154(defgeneric monom-elt (m index)
155 (:documentation "Return the power in the monomial M of variable number INDEX.")
156 (:method ((m monom) index)
157 "Return the power in the monomial M of variable number INDEX."
158 (with-slots (exponents)
159 m
160 (elt exponents index))))
161
162(defgeneric (setf monom-elt) (new-value m index)
163 (:documentation "Set the power in the monomial M of variable number INDEX.")
164 (:method (new-value (m monom) index)
165 (with-slots (exponents)
166 m
167 (setf (elt exponents index) new-value))))
168
169(defgeneric total-degree (m &optional start end)
170 (:documentation "Return the total degree of a monomoal M. Optinally, a range
171of variables may be specified with arguments START and END.")
172 (:method ((m monom) &optional (start 0) (end (monom-dimension m)))
173 (declare (type fixnum start end))
174 (with-slots (exponents)
175 m
176 (reduce #'+ exponents :start start :end end))))
177
178(defgeneric sugar (m &optional start end)
179 (:documentation "Return the sugar of a monomial M. Optinally, a range
180of variables may be specified with arguments START and END.")
181 (:method ((m monom) &optional (start 0) (end (monom-dimension m)))
182 (declare (type fixnum start end))
183 (total-degree m start end)))
184
185(defgeneric multiply-by (self other)
186 (:documentation "Multiply SELF by OTHER, return SELF. The object SELF
187may be destructively modified in the process, while OTHER should remain
188unmodified.")
189 (:method ((self number) (other number)) (* self other))
190 (:method ((self monom) (other monom))
191 (with-slots ((exponents1 exponents))
192 self
193 (with-slots ((exponents2 exponents))
194 other
195 (unless (= (length exponents1) (length exponents2))
196 (error "Incompatible dimensions"))
197 (map-into exponents1 #'+ exponents1 exponents2)))
198 self))
199
200(defun multiply (factor &rest more-factors)
201 "Successively multiplies factor FACTOR by the remaining arguments
202MORE-FACTORS, using MULTIPLY-BY to multiply two factors. Thus
203FACTOR may be destructively modified."
204 (reduce #'multiply-by more-factors :initial-value (copy-instance factor)))
205
206(defgeneric divide-by (self other)
207 (:documentation "Divide SELF by OTHER, return SELF.")
208 (:method ((self number) (other number)) (/ self other))
209 (:method ((self monom) (other monom))
210 (with-slots ((exponents1 exponents))
211 self
212 (with-slots ((exponents2 exponents))
213 other
214 (unless (= (length exponents1) (length exponents2))
215 (error "divide-by: Incompatible dimensions."))
216 (unless (every #'>= exponents1 exponents2)
217 (error "divide-by: Negative power would result."))
218 (map-into exponents1 #'- exponents1 exponents2)))
219 self))
220
221(defmethod copy-instance :around ((object monom) &rest initargs &key &allow-other-keys)
222 "An :AROUND method of COPY-INSTANCE. It replaces exponents with a fresh copy of the sequence."
223 (declare (ignore object initargs))
224 (let ((copy (call-next-method)))
225 (setf (monom-exponents copy) (copy-seq (monom-exponents copy)))
226 copy))
227
228(defgeneric unary-inverse (self)
229 (:documentation "Returns the unary inverse of SELF.")
230 (:method ((self number)) (/ self))
231 (:method :before ((self monom))
232 (assert (zerop (total-degree self))
233 nil
234 "Monom ~A must have total degree 0 to be invertible." self))
235 (:method ((self monom)) self))
236
237(defun divide (numerator &rest denominators)
238 "Successively divides NUMERATOR by elements of DENOMINATORS. The operation
239destructively modifies NUMERATOR."
240 (cond ((endp denominators)
241 (unary-inverse numerator))
242 (t (reduce #'divide-by denominators :initial-value (copy-instance numerator)))))
243
244(defgeneric divides-p (object1 object2)
245 (:documentation "Returns T if OBJECT1 divides OBJECT2.")
246 (:method ((m1 monom) (m2 monom))
247 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
248 (with-slots ((exponents1 exponents))
249 m1
250 (with-slots ((exponents2 exponents))
251 m2
252 (every #'<= exponents1 exponents2)))))
253
254(defgeneric divides-lcm-p (object1 object2 object3)
255 (:documentation "Returns T if OBJECT1 divides LCM(OBJECT2,OBJECT3), NIL otherwise.")
256 (:method ((m1 monom) (m2 monom) (m3 monom))
257 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
258 (with-slots ((exponents1 exponents))
259 m1
260 (with-slots ((exponents2 exponents))
261 m2
262 (with-slots ((exponents3 exponents))
263 m3
264 (every #'(lambda (x y z) (<= x (max y z)))
265 exponents1 exponents2 exponents3))))))
266
267(defgeneric lcm-divides-lcm-p (object1 object2 object3 object4)
268 (:method ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
269 "Returns T if monomial LCM(M1,M2) divides LCM(M3,M4), NIL otherwise."
270 (with-slots ((exponents1 exponents))
271 m1
272 (with-slots ((exponents2 exponents))
273 m2
274 (with-slots ((exponents3 exponents))
275 m3
276 (with-slots ((exponents4 exponents))
277 m4
278 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
279 exponents1 exponents2 exponents3 exponents4)))))))
280
281(defgeneric monom-lcm-equal-lcm-p (object1 object2 object3 object4)
282 (:method ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
283 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
284 (with-slots ((exponents1 exponents))
285 m1
286 (with-slots ((exponents2 exponents))
287 m2
288 (with-slots ((exponents3 exponents))
289 m3
290 (with-slots ((exponents4 exponents))
291 m4
292 (every
293 #'(lambda (x y z w) (= (max x y) (max z w)))
294 exponents1 exponents2 exponents3 exponents4)))))))
295
296(defgeneric divisible-by-p (object1 object2)
297 (:documentation "Return T if OBJECT1 is divisible by OBJECT2.")
298 (:method ((m1 monom) (m2 monom))
299 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
300 (with-slots ((exponents1 exponents))
301 m1
302 (with-slots ((exponents2 exponents))
303 m2
304 (every #'>= exponents1 exponents2)))))
305
306(defgeneric rel-prime-p (object1 object2)
307 (:documentation "Returns T if objects OBJECT1 and OBJECT2 are relatively prime.")
308 (:method ((m1 monom) (m2 monom))
309 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
310 (with-slots ((exponents1 exponents))
311 m1
312 (with-slots ((exponents2 exponents))
313 m2
314 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2)))))
315
316(defgeneric universal-lcm (object1 object2)
317 (:documentation "Returns the multiple of objects OBJECT1 and OBJECT2.")
318 (:method ((m1 monom) (m2 monom))
319 "Returns least common multiple of monomials M1 and M2."
320 (with-slots ((exponents1 exponents))
321 m1
322 (with-slots ((exponents2 exponents))
323 m2
324 (let* ((exponents (copy-seq exponents1)))
325 (map-into exponents #'max exponents1 exponents2)
326 (make-instance 'monom :exponents exponents))))))
327
328
329(defgeneric universal-gcd (object1 object2)
330 (:documentation "Returns GCD of objects OBJECT1 and OBJECT2")
331 (:method ((object1 number) (object2 number)) (gcd object1 object2))
332 (:method ((m1 monom) (m2 monom))
333 "Returns greatest common divisor of monomials M1 and M2."
334 (with-slots ((exponents1 exponents))
335 m1
336 (with-slots ((exponents2 exponents))
337 m2
338 (let* ((exponents (copy-seq exponents1)))
339 (map-into exponents #'min exponents1 exponents2)
340 (make-instance 'monom :exponents exponents))))))
341
342(defgeneric depends-p (object k)
343 (:documentation "Returns T iff object OBJECT depends on variable K.")
344 (:method ((m monom) k)
345 "Return T if the monomial M depends on variable number K."
346 (declare (type fixnum k))
347 (with-slots (exponents)
348 m
349 (plusp (elt exponents k)))))
350
351(defgeneric left-tensor-product-by (self other)
352 (:documentation "Returns a tensor product SELF by OTHER, stored into
353 SELF. Return SELF.")
354 (:method ((self monom) (other monom))
355 (with-slots ((exponents1 exponents))
356 self
357 (with-slots ((exponents2 exponents))
358 other
359 (setf exponents1 (concatenate 'vector exponents2 exponents1))))
360 self))
361
362(defgeneric right-tensor-product-by (self other)
363 (:documentation "Returns a tensor product of OTHER by SELF, stored
364 into SELF. Returns SELF.")
365 (:method ((self monom) (other monom))
366 (with-slots ((exponents1 exponents))
367 self
368 (with-slots ((exponents2 exponents))
369 other
370 (setf exponents1 (concatenate 'vector exponents1 exponents2))))
371 self))
372
373(defgeneric left-contract (self k)
374 (:documentation "Drop the first K variables in object SELF.")
375 (:method ((self monom) k)
376 "Drop the first K variables in monomial M."
377 (declare (fixnum k))
378 (with-slots (exponents)
379 self
380 (setf exponents (subseq exponents k)))
381 self))
382
383(defun make-monom-variable (nvars pos &optional (power 1)
384 &aux (m (make-instance 'monom :dimension nvars)))
385 "Construct a monomial in the polynomial ring
386RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
387which represents a single variable. It assumes number of variables
388NVARS and the variable is at position POS. Optionally, the variable
389may appear raised to power POWER. "
390 (declare (type fixnum nvars pos power) (type monom m))
391 (with-slots (exponents)
392 m
393 (setf (elt exponents pos) power)
394 m))
395
396(defun make-monom-constant (dimension)
397 (make-instance 'monom :dimension dimension))
398
399;; pure lexicographic
400(defgeneric lex> (p q &optional start end)
401 (:documentation "Return T if P>Q with respect to lexicographic
402order, otherwise NIL. The second returned value is T if P=Q,
403otherwise it is NIL.")
404 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
405 (declare (type fixnum start end))
406 (do ((i start (1+ i)))
407 ((>= i end) (values nil t))
408 (cond
409 ((> (monom-elt p i) (monom-elt q i))
410 (return-from lex> (values t nil)))
411 ((< (monom-elt p i) (monom-elt q i))
412 (return-from lex> (values nil nil)))))))
413
414;; total degree order, ties broken by lexicographic
415(defgeneric grlex> (p q &optional start end)
416 (:documentation "Return T if P>Q with respect to graded
417lexicographic order, otherwise NIL. The second returned value is T if
418P=Q, otherwise it is NIL.")
419 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
420 (declare (type monom p q) (type fixnum start end))
421 (let ((d1 (total-degree p start end))
422 (d2 (total-degree q start end)))
423 (declare (type fixnum d1 d2))
424 (cond
425 ((> d1 d2) (values t nil))
426 ((< d1 d2) (values nil nil))
427 (t
428 (lex> p q start end))))))
429
430;; reverse lexicographic
431(defgeneric revlex> (p q &optional start end)
432 (:documentation "Return T if P>Q with respect to reverse
433lexicographic order, NIL otherwise. The second returned value is T if
434P=Q, otherwise it is NIL. This is not and admissible monomial order
435because some sets do not have a minimal element. This order is useful
436in constructing other orders.")
437 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
438 (declare (type fixnum start end))
439 (do ((i (1- end) (1- i)))
440 ((< i start) (values nil t))
441 (declare (type fixnum i))
442 (cond
443 ((< (monom-elt p i) (monom-elt q i))
444 (return-from revlex> (values t nil)))
445 ((> (monom-elt p i) (monom-elt q i))
446 (return-from revlex> (values nil nil)))))))
447
448
449;; total degree, ties broken by reverse lexicographic
450(defgeneric grevlex> (p q &optional start end)
451 (:documentation "Return T if P>Q with respect to graded reverse
452lexicographic order, NIL otherwise. The second returned value is T if
453P=Q, otherwise it is NIL.")
454 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
455 (declare (type fixnum start end))
456 (let ((d1 (total-degree p start end))
457 (d2 (total-degree q start end)))
458 (declare (type fixnum d1 d2))
459 (cond
460 ((> d1 d2) (values t nil))
461 ((< d1 d2) (values nil nil))
462 (t
463 (revlex> p q start end))))))
464
465(defgeneric invlex> (p q &optional start end)
466 (:documentation "Return T if P>Q with respect to inverse
467lexicographic order, NIL otherwise The second returned value is T if
468P=Q, otherwise it is NIL.")
469 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
470 (declare (type fixnum start end))
471 (do ((i (1- end) (1- i)))
472 ((< i start) (values nil t))
473 (declare (type fixnum i))
474 (cond
475 ((> (monom-elt p i) (monom-elt q i))
476 (return-from invlex> (values t nil)))
477 ((< (monom-elt p i) (monom-elt q i))
478 (return-from invlex> (values nil nil)))))))
479
480(defun reverse-monomial-order (order)
481 "Create the inverse monomial order to the given monomial order ORDER."
482 #'(lambda (p q &optional (start 0) (end (monom-dimension q)))
483 (declare (type monom p q) (type fixnum start end))
484 (funcall order q p start end)))
485
486;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
487;;
488;; Order making functions
489;;
490;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
491
492;; This returns a closure with the same signature
493;; as all orders such as #'LEX>.
494(defun make-elimination-order-factory-1 (&optional (secondary-elimination-order #'lex>))
495 "It constructs an elimination order used for the 1-st elimination ideal,
496i.e. for eliminating the first variable. Thus, the order compares the degrees of the
497first variable in P and Q first, with ties broken by SECONDARY-ELIMINATION-ORDER."
498 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
499 (declare (type monom p q) (type fixnum start end))
500 (cond
501 ((> (monom-elt p start) (monom-elt q start))
502 (values t nil))
503 ((< (monom-elt p start) (monom-elt q start))
504 (values nil nil))
505 (t
506 (funcall secondary-elimination-order p q (1+ start) end)))))
507
508;; This returns a closure which is called with an integer argument.
509;; The result is *another closure* with the same signature as all
510;; orders such as #'LEX>.
511(defun make-elimination-order-factory (&optional
512 (primary-elimination-order #'lex>)
513 (secondary-elimination-order #'lex>))
514 "Return a function with a single integer argument K. This should be
515the number of initial K variables X[0],X[1],...,X[K-1], which precede
516remaining variables. The call to the closure creates a predicate
517which compares monomials according to the K-th elimination order. The
518monomial orders PRIMARY-ELIMINATION-ORDER and
519SECONDARY-ELIMINATION-ORDER are used to compare the first K and the
520remaining variables, respectively, with ties broken by lexicographical
521order. That is, if PRIMARY-ELIMINATION-ORDER yields (VALUES NIL T),
522which indicates that the first K variables appear with identical
523powers, then the result is that of a call to
524SECONDARY-ELIMINATION-ORDER applied to the remaining variables
525X[K],X[K+1],..."
526 #'(lambda (k)
527 (cond
528 ((<= k 0)
529 (error "K must be at least 1"))
530 ((= k 1)
531 (make-elimination-order-factory-1 secondary-elimination-order))
532 (t
533 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
534 (declare (type monom p q) (type fixnum start end))
535 (multiple-value-bind (primary equal)
536 (funcall primary-elimination-order p q start k)
537 (if equal
538 (funcall secondary-elimination-order p q k end)
539 (values primary nil))))))))
540
541(defclass term (monom)
542 ((coeff :initarg :coeff :accessor term-coeff))
543 (:default-initargs :coeff nil)
544 (:documentation "Implements a term, i.e. a product of a scalar
545and powers of some variables, such as 5*X^2*Y^3."))
546
547(defmethod update-instance-for-different-class :after ((old monom) (new term) &key (coeff 1))
548 "Converts OLD of class MONOM to a NEW of class TERM, initializing coefficient to COEFF."
549 (reinitialize-instance new :coeff coeff))
550
551(defmethod update-instance-for-different-class :after ((old term) (new term) &key (coeff (term-coeff old)))
552 "Converts OLD of class TERM to a NEW of class TERM, initializing coefficient to COEFF."
553 (reinitialize-instance new :coeff coeff))
554
555
556(defmethod print-object ((self term) stream)
557 (print-unreadable-object (self stream :type t :identity t)
558 (with-accessors ((exponents monom-exponents)
559 (coeff term-coeff))
560 self
561 (format stream "EXPONENTS=~A COEFF=~A"
562 exponents coeff))))
563
564(defmethod copy-instance :around ((object term) &rest initargs &key &allow-other-keys)
565 "An :AROUND method of COPY-INSTANCE. It replaces the coefficient with a fresh copy."
566 (declare (ignore object initargs))
567 (let ((copy (call-next-method)))
568 (setf (term-coeff copy) (copy-instance (term-coeff object)))
569 copy))
570
571(defmethod multiply-by ((self term) (other number))
572 (reinitialize-instance self :coeff (multiply-by (term-coeff self) other)))
573
574(defmethod divide-by ((self term) (other number))
575 (reinitialize-instance self :coeff (divide-by (term-coeff self) other)))
576
577(defmethod unary-inverse :after ((self term))
578 (with-slots (coeff)
579 self
580 (setf coeff (unary-inverse coeff))))
581
582(defun make-term-constant (dimension &optional (coeff 1))
583 (make-instance 'term :dimension dimension :coeff coeff))
584
585(defmethod universal-equalp ((term1 term) (term2 term))
586 "Returns T if TERM1 and TERM2 are equal as MONOM, and coefficients
587are UNIVERSAL-EQUALP."
588 (and (call-next-method)
589 (universal-equalp (term-coeff term1) (term-coeff term2))))
590
591(defmethod multiply-by :before ((self term) (other term))
592 "Destructively multiply terms SELF and OTHER and store the result into SELF.
593It returns SELF."
594 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
595
596
597(defmethod left-tensor-product-by :before ((self term) (other term))
598 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
599
600(defmethod right-tensor-product-by :before ((self term) (other term))
601 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
602
603(defmethod divide-by :before ((self term) (other term))
604 (setf (term-coeff self) (divide-by (term-coeff self) (term-coeff other))))
605
606(defgeneric unary-minus (self)
607 (:documentation "Negate object SELF and return it.")
608 (:method ((self number)) (- self))
609 (:method ((self term))
610 (setf (term-coeff self) (unary-minus (term-coeff self)))
611 self))
612
613(defgeneric universal-zerop (self)
614 (:documentation "Return T iff SELF is zero.")
615 (:method ((self number)) (zerop self))
616 (:method ((self term))
617 (universal-zerop (term-coeff self))))
618
619(defgeneric ->list (self)
620 (:method ((self monom))
621 "A human-readable representation of a monomial SELF as a list of exponents."
622 (coerce (monom-exponents self) 'list))
623 (:method ((self term))
624 "A human-readable representation of a term SELF as a cons of the list of exponents and the coefficient."
625 (cons (coerce (monom-exponents self) 'list) (term-coeff self))))
626
627(defgeneric ->sexp (object &optional vars)
628 (:documentation "Convert a polynomial OBJECT to an S-expression, using variables VARS.")
629 (:method :before ((object monom) &optional vars)
630 "Check the length of variables VARS against the length of exponents in OBJECT."
631 (with-slots (exponents)
632 object
633 (assert (= (length vars) (length exponents))
634 nil
635 "Variables ~A and exponents ~A must have the same length." vars exponents)))
636 (:method ((object monom) &optional vars)
637 "Convert a monomial OBJECT to infix form, using variable VARS to build the representation."
638 (with-slots (exponents)
639 object
640 (let ((m (mapcan #'(lambda (var power)
641 (cond ((= power 0) nil)
642 ((= power 1) (list var))
643 (t (list `(expt ,var ,power)))))
644 vars (coerce exponents 'list))))
645 (cond ((endp m) 1)
646 ((endp (cdr m)) (car m))
647 (t
648 (cons '* m))))))
649 (:method :around ((object term) &optional vars)
650 "Convert a term OBJECT to infix form, using variable VARS to build the representation."
651 (declare (ignore vars))
652 (with-slots (coeff)
653 object
654 (let ((sexp (call-next-method)))
655 (cond ((eql coeff 1) sexp)
656 ((atom sexp)
657 (cond ((eql sexp 1) coeff)
658 (t (list '* coeff sexp))))
659 ((eql (car sexp) '*)
660 (list* '* coeff (cdr sexp)))
661 (t
662 (list '* coeff sexp)))))))
Note: See TracBrowser for help on using the repository browser.