close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 4045

Last change on this file since 4045 was 4045, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 24.3 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "MONOM"
23 (:use :cl :utils :copy)
24 (:export "MONOM"
25 "TERM"
26 "EXPONENT"
27 "MONOM-DIMENSION"
28 "MONOM-EXPONENTS"
29 "UNIVERSAL-EQUALP"
30 "MONOM-ELT"
31 "TOTAL-DEGREE"
32 "SUGAR"
33 "MULTIPLY-BY"
34 "DIVIDE-BY"
35 "DIVIDE"
36 "MULTIPLY-2"
37 "MULTIPLY"
38 "DIVIDES-P"
39 "DIVIDES-LCM-P"
40 "LCM-DIVIDES-LCM-P"
41 "LCM-EQUAL-LCM-P"
42 "DIVISIBLE-BY-P"
43 "REL-PRIME-P"
44 "UNIVERSAL-LCM"
45 "UNIVERSAL-GCD"
46 "DEPENDS-P"
47 "LEFT-TENSOR-PRODUCT-BY"
48 "RIGHT-TENSOR-PRODUCT-BY"
49 "LEFT-CONTRACT"
50 "MAKE-MONOM-VARIABLE"
51 "MAKE-MONOM-CONSTANT"
52 "MAKE-TERM-CONSTANT"
53 "->LIST"
54 "->SEXP"
55 "LEX>"
56 "GRLEX>"
57 "REVLEX>"
58 "GREVLEX>"
59 "INVLEX>"
60 "REVERSE-MONOMIAL-ORDER"
61 "MAKE-ELIMINATION-ORDER-FACTORY"
62 "TERM-COEFF"
63 "UNARY-MINUS"
64 "UNARY-INVERSE"
65 "UNIVERSAL-ZEROP")
66 (:documentation
67 "This package implements basic operations on monomials, including
68various monomial orders.
69
70DATA STRUCTURES: Conceptually, monomials can be represented as lists:
71
72 monom: (n1 n2 ... nk) where ni are non-negative integers
73
74However, lists may be implemented as other sequence types, so the
75flexibility to change the representation should be maintained in the
76code to use general operations on sequences whenever possible. The
77optimization for the actual representation should be left to
78declarations and the compiler.
79
80EXAMPLES: Suppose that variables are x and y. Then
81
82 Monom x*y^2 ---> (1 2) "))
83
84(in-package :monom)
85
86(proclaim '(optimize (speed 0) (space 0) (safety 3) (debug 0)))
87
88(deftype exponent ()
89 "Type of exponent in a monomial."
90 'fixnum)
91
92(defclass monom ()
93 ((exponents :initarg :exponents :accessor monom-exponents
94 :documentation "The powers of the variables."))
95 ;; default-initargs are not needed, they are handled by SHARED-INITIALIZE
96 ;;(:default-initargs :dimension 'foo :exponents 'bar :exponent 'baz)
97 (:documentation
98 "Implements a monomial, i.e. a product of powers
99of variables, like X*Y^2."))
100
101(defmethod print-object ((self monom) stream)
102 (print-unreadable-object (self stream :type t :identity t)
103 (with-accessors ((exponents monom-exponents))
104 self
105 (format stream "EXPONENTS=~A"
106 exponents))))
107
108(defmethod initialize-instance :after ((self monom)
109 &key
110 (dimension 0 dimension-supplied-p)
111 (exponents nil exponents-supplied-p)
112 (exponent 0)
113 &allow-other-keys
114 )
115 "The following INITIALIZE-INSTANCE method allows instance initialization
116of a MONOM in a style similar to MAKE-ARRAY, e.g.:
117
118 (MAKE-INSTANCE 'MONOM :EXPONENTS '(1 2 3)) --> #<MONOM EXPONENTS=#(1 2 3)>
119 (MAKE-INSTANCE 'MONOM :DIMENSION 3) --> #<MONOM EXPONENTS=#(0 0 0)>
120 (MAKE-INSTANCE 'MONOM :DIMENSION 3 :EXPONENT 7) --> #<MONOM EXPONENTS=#(7 7 7)>
121
122If both DIMENSION and EXPONENTS are supplied, they must be compatible,
123i.e. the length of EXPONENTS must be equal DIMENSION. If EXPONENTS
124is not supplied, a monom with repeated value EXPONENT is created.
125By default EXPONENT is 0, which results in a constant monomial.
126"
127 (cond
128 (exponents-supplied-p
129 (when (and dimension-supplied-p
130 (/= dimension (length exponents)))
131 (error "EXPONENTS (~A) must have supplied length DIMENSION (~A)"
132 exponents dimension))
133 (let ((dim (length exponents)))
134 (setf (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
135 (dimension-supplied-p
136 ;; when all exponents are to be identical
137 (setf (slot-value self 'exponents) (make-array (list dimension)
138 :initial-element exponent
139 :element-type 'exponent)))
140 (t
141 (error "Initarg DIMENSION or EXPONENTS must be supplied."))))
142
143(defgeneric monom-dimension (self)
144 (:method ((self monom))
145 (length (monom-exponents self))))
146
147(defgeneric universal-equalp (object1 object2)
148 (:documentation "Returns T iff OBJECT1 and OBJECT2 are equal.")
149 (:method ((object1 cons) (object2 cons)) (every #'universal-equalp object1 object2))
150 (:method ((object1 number) (object2 number)) (= object1 object2))
151 (:method ((m1 monom) (m2 monom))
152 "Returns T iff monomials M1 and M2 have identical EXPONENTS."
153 (equalp (monom-exponents m1) (monom-exponents m2))))
154
155(defgeneric monom-elt (m index)
156 (:documentation "Return the power in the monomial M of variable number INDEX.")
157 (:method ((m monom) index)
158 "Return the power in the monomial M of variable number INDEX."
159 (with-slots (exponents)
160 m
161 (elt exponents index))))
162
163(defgeneric (setf monom-elt) (new-value m index)
164 (:documentation "Set the power in the monomial M of variable number INDEX.")
165 (:method (new-value (m monom) index)
166 (with-slots (exponents)
167 m
168 (setf (elt exponents index) new-value))))
169
170(defgeneric total-degree (m &optional start end)
171 (:documentation "Return the total degree of a monomoal M. Optinally, a range
172of variables may be specified with arguments START and END.")
173 (:method ((m monom) &optional (start 0) (end (monom-dimension m)))
174 (declare (type fixnum start end))
175 (with-slots (exponents)
176 m
177 (reduce #'+ exponents :start start :end end))))
178
179(defgeneric sugar (m &optional start end)
180 (:documentation "Return the sugar of a monomial M. Optinally, a range
181of variables may be specified with arguments START and END.")
182 (:method ((m monom) &optional (start 0) (end (monom-dimension m)))
183 (declare (type fixnum start end))
184 (total-degree m start end)))
185
186(defgeneric multiply-by (self other)
187 (:documentation "Multiply SELF by OTHER, return SELF.")
188 (:method ((self number) (other number)) (* self other))
189 (:method ((self monom) (other monom))
190 (with-slots ((exponents1 exponents))
191 self
192 (with-slots ((exponents2 exponents))
193 other
194 (unless (= (length exponents1) (length exponents2))
195 (error "Incompatible dimensions"))
196 (map-into exponents1 #'+ exponents1 exponents2)))
197 self))
198
199(defgeneric divide-by (self other)
200 (:documentation "Divide SELF by OTHER, return SELF.")
201 (:method ((self number) (other number)) (/ self other))
202 (:method ((self monom) (other monom))
203 (with-slots ((exponents1 exponents))
204 self
205 (with-slots ((exponents2 exponents))
206 other
207 (unless (= (length exponents1) (length exponents2))
208 (error "divide-by: Incompatible dimensions."))
209 (unless (every #'>= exponents1 exponents2)
210 (error "divide-by: Negative power would result."))
211 (map-into exponents1 #'- exponents1 exponents2)))
212 self))
213
214(defmethod copy-instance :around ((object monom) &rest initargs &key &allow-other-keys)
215 "An :AROUND method of COPY-INSTANCE. It replaces
216exponents with a fresh copy of the sequence."
217 (declare (ignore object initargs))
218 (let ((copy (call-next-method)))
219 (setf (monom-exponents copy) (copy-seq (monom-exponents copy)))
220 copy))
221
222(defun multiply-2 (object1 object2)
223 "Multiply OBJECT1 by OBJECT2"
224 (multiply-by (copy-instance object1) (copy-instance object2)))
225
226(defun multiply (&rest factors)
227 "Non-destructively multiply list FACTORS."
228 (cond ((endp factors) 1)
229 ((endp (rest factors)) (first factors))
230 (t (reduce #'multiply-2 factors :initial-value 1))))
231
232(defgeneric unary-inverse (self)
233 (:documentation "Returns the unary inverse of SELF.")
234 (:method ((self number)) (/ self))
235 (:method :before ((self monom))
236 (assert (zerop (total-degree self))
237 nil
238 "Monom ~A must have total degree 0 to be invertible." self))
239 (:method ((self monom)) self))
240
241(defun divide (numerator &rest denominators)
242 "Non-destructively divide object NUMERATOR by product of DENOMINATORS."
243 (cond ((endp denominators)
244 (unary-inverse numerator))
245 (t (divide-by (copy-instance numerator) (apply #'multiply denominators)))))
246
247(defgeneric divides-p (object1 object2)
248 (:documentation "Returns T if OBJECT1 divides OBJECT2.")
249 (:method ((m1 monom) (m2 monom))
250 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
251 (with-slots ((exponents1 exponents))
252 m1
253 (with-slots ((exponents2 exponents))
254 m2
255 (every #'<= exponents1 exponents2)))))
256
257(defgeneric divides-lcm-p (object1 object2 object3)
258 (:documentation "Returns T if OBJECT1 divides LCM(OBJECT2,OBJECT3), NIL otherwise.")
259 (:method ((m1 monom) (m2 monom) (m3 monom))
260 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
261 (with-slots ((exponents1 exponents))
262 m1
263 (with-slots ((exponents2 exponents))
264 m2
265 (with-slots ((exponents3 exponents))
266 m3
267 (every #'(lambda (x y z) (<= x (max y z)))
268 exponents1 exponents2 exponents3))))))
269
270(defgeneric lcm-divides-lcm-p (object1 object2 object3 object4)
271 (:method ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
272 "Returns T if monomial LCM(M1,M2) divides LCM(M3,M4), NIL otherwise."
273 (with-slots ((exponents1 exponents))
274 m1
275 (with-slots ((exponents2 exponents))
276 m2
277 (with-slots ((exponents3 exponents))
278 m3
279 (with-slots ((exponents4 exponents))
280 m4
281 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
282 exponents1 exponents2 exponents3 exponents4)))))))
283
284(defgeneric monom-lcm-equal-lcm-p (object1 object2 object3 object4)
285 (:method ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
286 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
287 (with-slots ((exponents1 exponents))
288 m1
289 (with-slots ((exponents2 exponents))
290 m2
291 (with-slots ((exponents3 exponents))
292 m3
293 (with-slots ((exponents4 exponents))
294 m4
295 (every
296 #'(lambda (x y z w) (= (max x y) (max z w)))
297 exponents1 exponents2 exponents3 exponents4)))))))
298
299(defgeneric divisible-by-p (object1 object2)
300 (:documentation "Return T if OBJECT1 is divisible by OBJECT2.")
301 (:method ((m1 monom) (m2 monom))
302 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
303 (with-slots ((exponents1 exponents))
304 m1
305 (with-slots ((exponents2 exponents))
306 m2
307 (every #'>= exponents1 exponents2)))))
308
309(defgeneric rel-prime-p (object1 object2)
310 (:documentation "Returns T if objects OBJECT1 and OBJECT2 are relatively prime.")
311 (:method ((m1 monom) (m2 monom))
312 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
313 (with-slots ((exponents1 exponents))
314 m1
315 (with-slots ((exponents2 exponents))
316 m2
317 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2)))))
318
319(defgeneric universal-lcm (object1 object2)
320 (:documentation "Returns the multiple of objects OBJECT1 and OBJECT2.")
321 (:method ((m1 monom) (m2 monom))
322 "Returns least common multiple of monomials M1 and M2."
323 (with-slots ((exponents1 exponents))
324 m1
325 (with-slots ((exponents2 exponents))
326 m2
327 (let* ((exponents (copy-seq exponents1)))
328 (map-into exponents #'max exponents1 exponents2)
329 (make-instance 'monom :exponents exponents))))))
330
331
332(defgeneric universal-gcd (object1 object2)
333 (:documentation "Returns GCD of objects OBJECT1 and OBJECT2")
334 (:method ((object1 number) (object2 number)) (gcd object1 object2))
335 (:method ((m1 monom) (m2 monom))
336 "Returns greatest common divisor of monomials M1 and M2."
337 (with-slots ((exponents1 exponents))
338 m1
339 (with-slots ((exponents2 exponents))
340 m2
341 (let* ((exponents (copy-seq exponents1)))
342 (map-into exponents #'min exponents1 exponents2)
343 (make-instance 'monom :exponents exponents))))))
344
345(defgeneric depends-p (object k)
346 (:documentation "Returns T iff object OBJECT depends on variable K.")
347 (:method ((m monom) k)
348 "Return T if the monomial M depends on variable number K."
349 (declare (type fixnum k))
350 (with-slots (exponents)
351 m
352 (plusp (elt exponents k)))))
353
354(defgeneric left-tensor-product-by (self other)
355 (:documentation "Returns a tensor product SELF by OTHER, stored into
356 SELF. Return SELF.")
357 (:method ((self monom) (other monom))
358 (with-slots ((exponents1 exponents))
359 self
360 (with-slots ((exponents2 exponents))
361 other
362 (setf exponents1 (concatenate 'vector exponents2 exponents1))))
363 self))
364
365(defgeneric right-tensor-product-by (self other)
366 (:documentation "Returns a tensor product of OTHER by SELF, stored
367 into SELF. Returns SELF.")
368 (:method ((self monom) (other monom))
369 (with-slots ((exponents1 exponents))
370 self
371 (with-slots ((exponents2 exponents))
372 other
373 (setf exponents1 (concatenate 'vector exponents1 exponents2))))
374 self))
375
376(defgeneric left-contract (self k)
377 (:documentation "Drop the first K variables in object SELF.")
378 (:method ((self monom) k)
379 "Drop the first K variables in monomial M."
380 (declare (fixnum k))
381 (with-slots (exponents)
382 self
383 (setf exponents (subseq exponents k)))
384 self))
385
386(defun make-monom-variable (nvars pos &optional (power 1)
387 &aux (m (make-instance 'monom :dimension nvars)))
388 "Construct a monomial in the polynomial ring
389RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
390which represents a single variable. It assumes number of variables
391NVARS and the variable is at position POS. Optionally, the variable
392may appear raised to power POWER. "
393 (declare (type fixnum nvars pos power) (type monom m))
394 (with-slots (exponents)
395 m
396 (setf (elt exponents pos) power)
397 m))
398
399(defun make-monom-constant (dimension)
400 (make-instance 'monom :dimension dimension))
401
402;; pure lexicographic
403(defgeneric lex> (p q &optional start end)
404 (:documentation "Return T if P>Q with respect to lexicographic
405order, otherwise NIL. The second returned value is T if P=Q,
406otherwise it is NIL.")
407 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
408 (declare (type fixnum start end))
409 (do ((i start (1+ i)))
410 ((>= i end) (values nil t))
411 (cond
412 ((> (monom-elt p i) (monom-elt q i))
413 (return-from lex> (values t nil)))
414 ((< (monom-elt p i) (monom-elt q i))
415 (return-from lex> (values nil nil)))))))
416
417;; total degree order, ties broken by lexicographic
418(defgeneric grlex> (p q &optional start end)
419 (:documentation "Return T if P>Q with respect to graded
420lexicographic order, otherwise NIL. The second returned value is T if
421P=Q, otherwise it is NIL.")
422 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
423 (declare (type monom p q) (type fixnum start end))
424 (let ((d1 (total-degree p start end))
425 (d2 (total-degree q start end)))
426 (declare (type fixnum d1 d2))
427 (cond
428 ((> d1 d2) (values t nil))
429 ((< d1 d2) (values nil nil))
430 (t
431 (lex> p q start end))))))
432
433;; reverse lexicographic
434(defgeneric revlex> (p q &optional start end)
435 (:documentation "Return T if P>Q with respect to reverse
436lexicographic order, NIL otherwise. The second returned value is T if
437P=Q, otherwise it is NIL. This is not and admissible monomial order
438because some sets do not have a minimal element. This order is useful
439in constructing other orders.")
440 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
441 (declare (type fixnum start end))
442 (do ((i (1- end) (1- i)))
443 ((< i start) (values nil t))
444 (declare (type fixnum i))
445 (cond
446 ((< (monom-elt p i) (monom-elt q i))
447 (return-from revlex> (values t nil)))
448 ((> (monom-elt p i) (monom-elt q i))
449 (return-from revlex> (values nil nil)))))))
450
451
452;; total degree, ties broken by reverse lexicographic
453(defgeneric grevlex> (p q &optional start end)
454 (:documentation "Return T if P>Q with respect to graded reverse
455lexicographic order, NIL otherwise. The second returned value is T if
456P=Q, otherwise it is NIL.")
457 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
458 (declare (type fixnum start end))
459 (let ((d1 (total-degree p start end))
460 (d2 (total-degree q start end)))
461 (declare (type fixnum d1 d2))
462 (cond
463 ((> d1 d2) (values t nil))
464 ((< d1 d2) (values nil nil))
465 (t
466 (revlex> p q start end))))))
467
468(defgeneric invlex> (p q &optional start end)
469 (:documentation "Return T if P>Q with respect to inverse
470lexicographic order, NIL otherwise The second returned value is T if
471P=Q, otherwise it is NIL.")
472 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
473 (declare (type fixnum start end))
474 (do ((i (1- end) (1- i)))
475 ((< i start) (values nil t))
476 (declare (type fixnum i))
477 (cond
478 ((> (monom-elt p i) (monom-elt q i))
479 (return-from invlex> (values t nil)))
480 ((< (monom-elt p i) (monom-elt q i))
481 (return-from invlex> (values nil nil)))))))
482
483(defun reverse-monomial-order (order)
484 "Create the inverse monomial order to the given monomial order ORDER."
485 #'(lambda (p q &optional (start 0) (end (monom-dimension q)))
486 (declare (type monom p q) (type fixnum start end))
487 (funcall order q p start end)))
488
489;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
490;;
491;; Order making functions
492;;
493;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
494
495;; This returns a closure with the same signature
496;; as all orders such as #'LEX>.
497(defun make-elimination-order-factory-1 (&optional (secondary-elimination-order #'lex>))
498 "It constructs an elimination order used for the 1-st elimination ideal,
499i.e. for eliminating the first variable. Thus, the order compares the degrees of the
500first variable in P and Q first, with ties broken by SECONDARY-ELIMINATION-ORDER."
501 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
502 (declare (type monom p q) (type fixnum start end))
503 (cond
504 ((> (monom-elt p start) (monom-elt q start))
505 (values t nil))
506 ((< (monom-elt p start) (monom-elt q start))
507 (values nil nil))
508 (t
509 (funcall secondary-elimination-order p q (1+ start) end)))))
510
511;; This returns a closure which is called with an integer argument.
512;; The result is *another closure* with the same signature as all
513;; orders such as #'LEX>.
514(defun make-elimination-order-factory (&optional
515 (primary-elimination-order #'lex>)
516 (secondary-elimination-order #'lex>))
517 "Return a function with a single integer argument K. This should be
518the number of initial K variables X[0],X[1],...,X[K-1], which precede
519remaining variables. The call to the closure creates a predicate
520which compares monomials according to the K-th elimination order. The
521monomial orders PRIMARY-ELIMINATION-ORDER and
522SECONDARY-ELIMINATION-ORDER are used to compare the first K and the
523remaining variables, respectively, with ties broken by lexicographical
524order. That is, if PRIMARY-ELIMINATION-ORDER yields (VALUES NIL T),
525which indicates that the first K variables appear with identical
526powers, then the result is that of a call to
527SECONDARY-ELIMINATION-ORDER applied to the remaining variables
528X[K],X[K+1],..."
529 #'(lambda (k)
530 (cond
531 ((<= k 0)
532 (error "K must be at least 1"))
533 ((= k 1)
534 (make-elimination-order-factory-1 secondary-elimination-order))
535 (t
536 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
537 (declare (type monom p q) (type fixnum start end))
538 (multiple-value-bind (primary equal)
539 (funcall primary-elimination-order p q start k)
540 (if equal
541 (funcall secondary-elimination-order p q k end)
542 (values primary nil))))))))
543
544(defclass term (monom)
545 ((coeff :initarg :coeff :accessor term-coeff))
546 (:default-initargs :coeff nil)
547 (:documentation "Implements a term, i.e. a product of a scalar
548and powers of some variables, such as 5*X^2*Y^3."))
549
550(defmethod update-instance-for-different-class :after ((old monom) (new term) &key (coeff 1))
551 "Converts OLD of class MONOM to a NEW of class TERM, initializing coefficient to COEFF."
552 (reinitialize-instance new :coeff coeff))
553
554(defmethod update-instance-for-different-class :after ((old term) (new term) &key (coeff (term-coeff old)))
555 "Converts OLD of class TERM to a NEW of class TERM, initializing coefficient to COEFF."
556 (reinitialize-instance new :coeff coeff))
557
558
559(defmethod print-object ((self term) stream)
560 (print-unreadable-object (self stream :type t :identity t)
561 (with-accessors ((exponents monom-exponents)
562 (coeff term-coeff))
563 self
564 (format stream "EXPONENTS=~A COEFF=~A"
565 exponents coeff))))
566
567(defmethod multiply-by ((self number) (other term))
568 (reinitialize-instance other :coeff (multiply self (term-coeff other))))
569
570(defmethod multiply-by ((self term) (other number))
571 (reinitialize-instance self :coeff (multiply (term-coeff self) other)))
572
573(defmethod divide-by ((self term) (other number))
574 (reinitialize-instance self :coeff (divide (term-coeff self) other)))
575
576(defmethod unary-inverse :after ((self term))
577 (with-slots (coeff)
578 self
579 (setf coeff (unary-inverse coeff))))
580
581(defun make-term-constant (dimension &optional (coeff 1))
582 (make-instance 'term :dimension dimension :coeff coeff))
583
584(defmethod universal-equalp ((term1 term) (term2 term))
585 "Returns T if TERM1 and TERM2 are equal as MONOM, and coefficients
586are UNIVERSAL-EQUALP."
587 (and (call-next-method)
588 (universal-equalp (term-coeff term1) (term-coeff term2))))
589
590(defmethod multiply-by :before ((self term) (other term))
591 "Destructively multiply terms SELF and OTHER and store the result into SELF.
592It returns SELF."
593 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
594
595(defmethod left-tensor-product-by :before ((self term) (other term))
596 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
597
598(defmethod right-tensor-product-by :before ((self term) (other term))
599 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
600
601(defmethod divide-by :before ((self term) (other term))
602 (setf (term-coeff self) (divide-by (term-coeff self) (term-coeff other))))
603
604(defgeneric unary-minus (self)
605 (:documentation "Negate object SELF and return it.")
606 (:method ((self number)) (- self))
607 (:method ((self term))
608 (setf (term-coeff self) (unary-minus (term-coeff self)))
609 self))
610
611(defgeneric universal-zerop (self)
612 (:documentation "Return T iff SELF is zero.")
613 (:method ((self number)) (zerop self))
614 (:method ((self term))
615 (universal-zerop (term-coeff self))))
616
617(defgeneric ->list (self)
618 (:method ((self monom))
619 "A human-readable representation of a monomial SELF as a list of exponents."
620 (coerce (monom-exponents self) 'list))
621 (:method ((self term))
622 "A human-readable representation of a term SELF as a cons of the list of exponents and the coefficient."
623 (cons (coerce (monom-exponents self) 'list) (term-coeff self))))
624
625(defgeneric ->sexp (self &optional vars)
626 (:documentation "Convert a symbolic polynomial SELF to infix form, using variables VARS. The default
627value of VARS is the corresponding slot value of SELF.")
628 (:method :before ((self monom) &optional vars)
629 "Check the length of variables VARS against the length of exponents in SELF."
630 (with-slots (exponents)
631 self
632 (assert (= (length vars) (length exponents))
633 nil
634 "Variables ~A and exponents ~A must have the same length." vars exponents)))
635 (:method ((self monom) &optional vars)
636 "Convert a monomial SELF to infix form, using variable VARS to build the representation."
637 (with-slots (exponents)
638 self
639 (let ((m (mapcan #'(lambda (var power)
640 (cond ((= power 0) nil)
641 ((= power 1) (list var))
642 (t (list `(expt ,var ,power)))))
643 vars (coerce exponents 'list))))
644 (cond ((endp m) 1)
645 ((endp (cdr m)) (car m))
646 (t
647 (cons '* m))))))
648 (:method ((self term) &optional vars)
649 "Convert a term SELF to infix form, using variable VARS to build the representation."
650 (declare (ignore vars))
651 (with-slots (exponents coeff)
652 self
653 (let ((m (call-next-method)))
654 (cond ((eql coeff 1) m)
655 ((atom m)
656 (cond ((eql m 1) coeff)
657 (t (list '* coeff m))))
658 ((eql (car m) '*)
659 (list* '* coeff (cdr m)))
660 (t
661 (list '* coeff m)))))))
Note: See TracBrowser for help on using the repository browser.