close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 3570

Last change on this file since 3570 was 3570, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 20.2 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "MONOM"
23 (:use :cl :copy)
24 (:export "MONOM"
25 "EXPONENT"
26 "MONOM-DIMENSION"
27 "MONOM-EXPONENTS"
28 "MONOM-EQUALP"
29 "MONOM-ELT"
30 "MONOM-TOTAL-DEGREE"
31 "MONOM-SUGAR"
32 "MONOM-MULTIPLY-BY"
33 "MONOM-DIVIDE-BY"
34 "MONOM-COPY-INSTANCE"
35 "MONOM-MULTIPLY-2"
36 "MONOM-MULTIPLY"
37 "MONOM-DIVIDES-P"
38 "MONOM-DIVIDES-LCM-P"
39 "MONOM-LCM-DIVIDES-LCM-P"
40 "MONOM-LCM-EQUAL-LCM-P"
41 "MONOM-DIVISIBLE-BY-P"
42 "MONOM-REL-PRIME-P"
43 "MONOM-LCM"
44 "MONOM-GCD"
45 "MONOM-DEPENDS-P"
46 "MONOM-LEFT-TENSOR-PRODUCT-BY"
47 "MONOM-RIGHT-TENSOR-PRODUCT-BY"
48 "MONOM-LEFT-CONTRACT"
49 "MAKE-MONOM-VARIABLE"
50 "MONOM->LIST"
51 "LEX>"
52 "GRLEX>"
53 "REVLEX>"
54 "GREVLEX>"
55 "INVLEX>"
56 "REVERSE-MONOMIAL-ORDER"
57 "MAKE-ELIMINATION-ORDER-FACTORY")
58 (:documentation
59 "This package implements basic operations on monomials, including
60various monomial orders.
61
62DATA STRUCTURES: Conceptually, monomials can be represented as lists:
63
64 monom: (n1 n2 ... nk) where ni are non-negative integers
65
66However, lists may be implemented as other sequence types, so the
67flexibility to change the representation should be maintained in the
68code to use general operations on sequences whenever possible. The
69optimization for the actual representation should be left to
70declarations and the compiler.
71
72EXAMPLES: Suppose that variables are x and y. Then
73
74 Monom x*y^2 ---> (1 2) "))
75
76(in-package :monom)
77
78(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
79
80(deftype exponent ()
81 "Type of exponent in a monomial."
82 'fixnum)
83
84(defclass monom ()
85 ((exponents :initarg :exponents :accessor monom-exponents
86 :documentation "The powers of the variables."))
87 ;; default-initargs are not needed, they are handled by SHARED-INITIALIZE
88 ;;(:default-initargs :dimension 'foo :exponents 'bar :exponent 'baz)
89 (:documentation
90 "Implements a monomial, i.e. a product of powers
91of variables, like X*Y^2."))
92
93(defmethod print-object ((self monom) stream)
94 (print-unreadable-object (self stream :type t :identity t)
95 (with-accessors ((exponents monom-exponents))
96 self
97 (format stream "EXPONENTS=~A"
98 exponents))))
99
100(defmethod initialize-instance :after ((self monom)
101 &key
102 (dimension 0 dimension-supplied-p)
103 (exponents nil exponents-supplied-p)
104 (exponent 0)
105 &allow-other-keys
106 )
107 "The following INITIALIZE-INSTANCE method allows instance initialization
108of a MONOM in a style similar to MAKE-ARRAY, e.g.:
109
110 (MAKE-INSTANCE :EXPONENTS '(1 2 3)) --> #<MONOM EXPONENTS=#(1 2 3)>
111 (MAKE-INSTANCE :DIMENSION 3) --> #<MONOM EXPONENTS=#(0 0 0)>
112 (MAKE-INSTANCE :DIMENSION 3 :EXPONENT 7) --> #<MONOM EXPONENTS=#(7 7 7)>
113
114If both DIMENSION and EXPONENTS are supplied, they must be compatible,
115i.e. the length of EXPONENTS must be equal DIMENSION. If EXPONENTS
116is not supplied, a monom with repeated value EXPONENT is created.
117By default EXPONENT is 0, which results in a constant monomial.
118"
119 (cond
120 (exponents-supplied-p
121 (when (and dimension-supplied-p
122 (/= dimension (length exponents)))
123 (error "EXPONENTS (~A) must have supplied length DIMENSION (~A)"
124 exponents dimension))
125 (let ((dim (length exponents)))
126 (setf (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
127 (dimension-supplied-p
128 ;; when all exponents are to be identical
129 (setf (slot-value self 'exponents) (make-array (list dimension)
130 :initial-element exponent
131 :element-type 'exponent)))
132 (t
133 (error "Initarg DIMENSION or EXPONENTS must be supplied."))))
134
135(defgeneric monom-dimension (m)
136 (:method ((m monom))
137 (length (monom-exponents m))))
138
139(defgeneric universal-equalp (object1 object2)
140 (:documentation "Returns T iff OBJECT1 and OBJECT2 are equal.")
141 (:method ((m1 monom) (m2 monom))
142 "Returns T iff monomials M1 and M2 have identical EXPONENTS."
143 (equalp (monom-exponents m1) (monom-exponents m2))))
144
145(defgeneric monom-elt (m index)
146 (:documentation "Return the power in the monomial M of variable number INDEX."
147 (:method ((m monom) index)
148 "Return the power in the monomial M of variable number INDEX."
149 (with-slots (exponents)
150 m
151 (elt exponents index))))
152
153(defgeneric (setf monom-elt) (new-value m index)
154 (:documentation "Set the power in the monomial M of variable number INDEX.")
155 (:method (new-value (m monom) index)
156 (with-slots (exponents)
157 m
158 (setf (elt exponents index) new-value))))
159
160(defgeneric total-degree (m &optional start end)
161 (:documentation "Return the total degree of a monomoal M. Optinally, a range
162of variables may be specified with arguments START and END.")
163 (:method ((m monom) &optional (start 0) (end (monom-dimension m)))
164 (declare (type fixnum start end))
165 (with-slots (exponents)
166 m
167 (reduce #'+ exponents :start start :end end))))
168
169(defgeneric sugar (m &optional start end)
170 (:documentation "Return the sugar of a monomial M. Optinally, a range
171of variables may be specified with arguments START and END.")
172 (:method ((m monom) &optional (start 0) (end (monom-dimension m)))
173 (declare (type fixnum start end))
174 (total-degree m start end)))
175
176(defgeneric multiply-by (self other)
177 (:documentation "Multiply SELF by OTHER, return SELF.")
178 (:method ((self monom) (other monom))
179 (with-slots ((exponents1 exponents))
180 self
181 (with-slots ((exponents2 exponents))
182 other
183 (unless (= (length exponents1) (length exponents2))
184 (error "Incompatible dimensions"))
185 (map-into exponents1 #'+ exponents1 exponents2)))
186 self))
187
188(defgeneric divide-by (self other)
189 (:documentation "Divide SELF by OTHER, return SELF.")
190 (:method ((self monom) (other monom))
191 (with-slots ((exponents1 exponents))
192 self
193 (with-slots ((exponents2 exponents))
194 other
195 (unless (= (length exponents1) (length exponents2))
196 (error "divide-by: Incompatible dimensions."))
197 (unless (every #'>= exponents1 exponents2)
198 (error "divide-by: Negative power would result."))
199 (map-into exponents1 #'- exponents1 exponents2)))
200 self))
201
202(defmethod copy-instance :around ((object monom) &rest initargs &key &allow-other-keys)
203 "An :AROUND method of COPY-INSTANCE. It replaces
204exponents with a fresh copy of the sequence."
205 (declare (ignore object initargs))
206 (let ((copy (call-next-method)))
207 (setf (monom-exponents copy) (copy-seq (monom-exponents copy)))
208 copy))
209
210(defun multiply-2 (object1 object2)
211 "Multiply OBJECT1 by OBJECT2"
212 (multiply-by (copy-instance object1) (copy-instance object2)))
213
214(defun multiply (&rest factors)
215 "Non-destructively multiply list FACTORS."
216 (reduce #'multiply-2 factors))
217
218(defun divide (numerator &rest denominators)
219 "Non-destructively divide object NUMERATOR by product of DENOMINATORS."
220 (divide-by (copy-instance numerator) (multiply denominators)))
221
222(defmethod monom-divides-p ((m1 monom) (m2 monom))
223 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
224 (with-slots ((exponents1 exponents))
225 m1
226 (with-slots ((exponents2 exponents))
227 m2
228 (every #'<= exponents1 exponents2))))
229
230(defmethod monom-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
231 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
232 (every #'(lambda (x y z) (<= x (max y z)))
233 m1 m2 m3))
234
235(defmethod monom-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
236 "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
237 (declare (type monom m1 m2 m3 m4))
238 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
239 m1 m2 m3 m4))
240
241(defmethod monom-lcm-equal-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
242 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
243 (with-slots ((exponents1 exponents))
244 m1
245 (with-slots ((exponents2 exponents))
246 m2
247 (with-slots ((exponents3 exponents))
248 m3
249 (with-slots ((exponents4 exponents))
250 m4
251 (every
252 #'(lambda (x y z w) (= (max x y) (max z w)))
253 exponents1 exponents2 exponents3 exponents4))))))
254
255(defgeneric divisible-by-p (object1 object2)
256 (:documentation "Return T if OBJECT1 is divisible by OBJECT2.")
257 (:method ((m1 monom) (m2 monom))
258 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
259 (with-slots ((exponents1 exponents))
260 m1
261 (with-slots ((exponents2 exponents))
262 m2
263 (every #'>= exponents1 exponents2)))))
264
265(defgeneric rel-prime-p (object1 object2)
266 "Returns T if objects OBJECT1 and OBJECT2 are relatively prime."
267 (:method ((m1 monom) (m2 monom))
268 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
269 (with-slots ((exponents1 exponents))
270 m1
271 (with-slots ((exponents2 exponents))
272 m2
273 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2)))))
274
275(defgeneric monom-lcm (object1 object2)
276 (:documentation "Returns the multiple of objects OBJECT1 and OBJECT2.")
277 (:method ((m1 monom) (m2 monom))
278 "Returns least common multiple of monomials M1 and M2."
279 (with-slots ((exponents1 exponents))
280 m1
281 (with-slots ((exponents2 exponents))
282 m2
283 (let* ((exponents (copy-seq exponents1)))
284 (map-into exponents #'max exponents1 exponents2)
285 (make-instance 'monom :exponents exponents))))))
286
287
288(defgeneric universal-gcd (object1 object2)
289 (:documentation "Returns GCD of objects OBJECT1 and OBJECT2")
290 (:method ((m1 monom) (m2 monom))
291 "Returns greatest common divisor of monomials M1 and M2."
292 (with-slots ((exponents1 exponents))
293 m1
294 (with-slots ((exponents2 exponents))
295 m2
296 (let* ((exponents (copy-seq exponents1)))
297 (map-into exponents #'min exponents1 exponents2)
298 (make-instance 'monom :exponents exponents))))))
299
300(defgeneric depends-p (object k)
301 (:documentation "Returns T iff object OBJECT depends on variable K.")
302 (:method ((m monom) k)
303 "Return T if the monomial M depends on variable number K."
304 (declare (type fixnum k))
305 (with-slots (exponents)
306 m
307 (plusp (elt exponents k)))))
308
309(defgeneric left-tensor-product-by (self other)
310 (:documentation "Returns a tensor product SELF by OTHER, stored into
311 SELF. Return SELF.")
312 (:method ((self monom) (other monom))
313 (with-slots ((exponents1 exponents))
314 self
315 (with-slots ((exponents2 exponents))
316 other
317 (setf exponents1 (concatenate 'vector exponents2 exponents1))))
318 self))
319
320(defgeneric right-tensor-product-by (self other)
321 (:documentation "Returns a tensor product of OTHER by SELF, stored
322 into SELF. Returns SELF.")
323 (:method ((self monom) (other monom))
324 (with-slots ((exponents1 exponents))
325 self
326 (with-slots ((exponents2 exponents))
327 other
328 (setf exponents1 (concatenate 'vector exponents1 exponents2))))
329 self))
330
331(defmethod monom-left-contract ((self monom) k)
332 "Drop the first K variables in monomial M."
333 (declare (fixnum k))
334 (with-slots (exponents)
335 self
336 (setf exponents (subseq exponents k)))
337 self)
338
339(defun make-monom-variable (nvars pos &optional (power 1)
340 &aux (m (make-instance 'monom :dimension nvars)))
341 "Construct a monomial in the polynomial ring
342RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
343which represents a single variable. It assumes number of variables
344NVARS and the variable is at position POS. Optionally, the variable
345may appear raised to power POWER. "
346 (declare (type fixnum nvars pos power) (type monom m))
347 (with-slots (exponents)
348 m
349 (setf (elt exponents pos) power)
350 m))
351
352(defmethod monom->list ((m monom))
353 "A human-readable representation of a monomial M as a list of exponents."
354 (coerce (monom-exponents m) 'list))
355
356
357;; pure lexicographic
358(defgeneric lex> (p q &optional start end)
359 (:documentation "Return T if P>Q with respect to lexicographic
360order, otherwise NIL. The second returned value is T if P=Q,
361otherwise it is NIL.")
362 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
363 (declare (type fixnum start end))
364 (do ((i start (1+ i)))
365 ((>= i end) (values nil t))
366 (cond
367 ((> (monom-elt p i) (monom-elt q i))
368 (return-from lex> (values t nil)))
369 ((< (monom-elt p i) (monom-elt q i))
370 (return-from lex> (values nil nil)))))))
371
372;; total degree order, ties broken by lexicographic
373(defgeneric grlex> (p q &optional start end)
374 (:documentation "Return T if P>Q with respect to graded
375lexicographic order, otherwise NIL. The second returned value is T if
376P=Q, otherwise it is NIL.")
377 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
378 (declare (type monom p q) (type fixnum start end))
379 (let ((d1 (monom-total-degree p start end))
380 (d2 (monom-total-degree q start end)))
381 (declare (type fixnum d1 d2))
382 (cond
383 ((> d1 d2) (values t nil))
384 ((< d1 d2) (values nil nil))
385 (t
386 (lex> p q start end))))))
387
388;; reverse lexicographic
389(defgeneric revlex> (p q &optional start end)
390 (:documentation "Return T if P>Q with respect to reverse
391lexicographic order, NIL otherwise. The second returned value is T if
392P=Q, otherwise it is NIL. This is not and admissible monomial order
393because some sets do not have a minimal element. This order is useful
394in constructing other orders.")
395 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
396 (declare (type fixnum start end))
397 (do ((i (1- end) (1- i)))
398 ((< i start) (values nil t))
399 (declare (type fixnum i))
400 (cond
401 ((< (monom-elt p i) (monom-elt q i))
402 (return-from revlex> (values t nil)))
403 ((> (monom-elt p i) (monom-elt q i))
404 (return-from revlex> (values nil nil)))))))
405
406
407;; total degree, ties broken by reverse lexicographic
408(defgeneric grevlex> (p q &optional start end)
409 (:documentation "Return T if P>Q with respect to graded reverse
410lexicographic order, NIL otherwise. The second returned value is T if
411P=Q, otherwise it is NIL.")
412 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
413 (declare (type fixnum start end))
414 (let ((d1 (monom-total-degree p start end))
415 (d2 (monom-total-degree q start end)))
416 (declare (type fixnum d1 d2))
417 (cond
418 ((> d1 d2) (values t nil))
419 ((< d1 d2) (values nil nil))
420 (t
421 (revlex> p q start end))))))
422
423(defgeneric invlex> (p q &optional start end)
424 (:documentation "Return T if P>Q with respect to inverse
425lexicographic order, NIL otherwise The second returned value is T if
426P=Q, otherwise it is NIL.")
427 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
428 (declare (type fixnum start end))
429 (do ((i (1- end) (1- i)))
430 ((< i start) (values nil t))
431 (declare (type fixnum i))
432 (cond
433 ((> (monom-elt p i) (monom-elt q i))
434 (return-from invlex> (values t nil)))
435 ((< (monom-elt p i) (monom-elt q i))
436 (return-from invlex> (values nil nil)))))))
437
438(defun reverse-monomial-order (order)
439 "Create the inverse monomial order to the given monomial order ORDER."
440 #'(lambda (p q &optional (start 0) (end (monom-dimension q)))
441 (declare (type monom p q) (type fixnum start end))
442 (funcall order q p start end)))
443
444;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
445;;
446;; Order making functions
447;;
448;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
449
450;; This returns a closure with the same signature
451;; as all orders such as #'LEX>.
452(defun make-elimination-order-factory-1 (&optional (secondary-elimination-order #'lex>))
453 "It constructs an elimination order used for the 1-st elimination ideal,
454i.e. for eliminating the first variable. Thus, the order compares the degrees of the
455first variable in P and Q first, with ties broken by SECONDARY-ELIMINATION-ORDER."
456 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
457 (declare (type monom p q) (type fixnum start end))
458 (cond
459 ((> (monom-elt p start) (monom-elt q start))
460 (values t nil))
461 ((< (monom-elt p start) (monom-elt q start))
462 (values nil nil))
463 (t
464 (funcall secondary-elimination-order p q (1+ start) end)))))
465
466;; This returns a closure which is called with an integer argument.
467;; The result is *another closure* with the same signature as all
468;; orders such as #'LEX>.
469(defun make-elimination-order-factory (&optional
470 (primary-elimination-order #'lex>)
471 (secondary-elimination-order #'lex>))
472 "Return a function with a single integer argument K. This should be
473the number of initial K variables X[0],X[1],...,X[K-1], which precede
474remaining variables. The call to the closure creates a predicate
475which compares monomials according to the K-th elimination order. The
476monomial orders PRIMARY-ELIMINATION-ORDER and
477SECONDARY-ELIMINATION-ORDER are used to compare the first K and the
478remaining variables, respectively, with ties broken by lexicographical
479order. That is, if PRIMARY-ELIMINATION-ORDER yields (VALUES NIL T),
480which indicates that the first K variables appear with identical
481powers, then the result is that of a call to
482SECONDARY-ELIMINATION-ORDER applied to the remaining variables
483X[K],X[K+1],..."
484 #'(lambda (k)
485 (cond
486 ((<= k 0)
487 (error "K must be at least 1"))
488 ((= k 1)
489 (make-elimination-order-factory-1 secondary-elimination-order))
490 (t
491 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
492 (declare (type monom p q) (type fixnum start end))
493 (multiple-value-bind (primary equal)
494 (funcall primary-elimination-order p q start k)
495 (if equal
496 (funcall secondary-elimination-order p q k end)
497 (values primary nil))))))))
498
499(defclass term (monom)
500 ((coeff :initarg :coeff :accessor term-coeff))
501 (:default-initargs :coeff nil)
502 (:documentation "Implements a term, i.e. a product of a scalar
503and powers of some variables, such as 5*X^2*Y^3."))
504
505(defmethod print-object ((self term) stream)
506 (print-unreadable-object (self stream :type t :identity t)
507 (with-accessors ((exponents monom-exponents)
508 (coeff term-coeff))
509 self
510 (format stream "EXPONENTS=~A COEFF=~A"
511 exponents coeff))))
512
513(defmethod universal-equalp ((term1 term) (term2 term))
514 "Returns T if TERM1 and TERM2 are equal as MONOM, and coefficients
515are UNIVERSAL-EQUALP."
516 (and (call-next-method)
517 (universal-equalp (term-coeff term1) (term-coeff term2))))
518
519(defmethod update-instance-for-different-class :after ((old monom) (new term) &key)
520 (setf (term-coeff new) 1))
521
522(defmethod multiply-by :before ((self term) (other term))
523 "Destructively multiply terms SELF and OTHER and store the result into SELF.
524It returns SELF."
525 (setf (term-coeff self) (multiply-by (term-coeff self) (scalar-coeff other))))
526
527(defmethod term-left-tensor-product-by :before ((self term) (other term))
528 (setf (term-coeff self) (universal-multiply-by (term-coeff self) (term-coeff other))))
529
530(defmethod term-right-tensor-product-by :before ((self term) (other term))
531 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
532
533(defmethod divide-by :before ((self term) (other term))
534 (setf (term-coeff self) (divide-by (term-coeff self) (term-coeff other))))
535
536(defmethod monom-unary-minus ((self term))
537 (setf (term-coeff self) (monom-unary-minus (term-coeff self)))
538 self)
539
540(defmethod monom-multiply ((term1 term) (term2 term))
541 "Non-destructively multiply TERM1 by TERM2."
542 (monom-multiply-by (copy-instance term1) (copy-instance term2)))
543
544(defmethod monom-multiply ((term1 number) (term2 monom))
545 "Non-destructively multiply TERM1 by TERM2."
546 (monom-multiply term1 (change-class (copy-instance term2) 'term)))
547
548(defmethod monom-zerop ((self term))
549 (zerop (term-coeff self)))
Note: See TracBrowser for help on using the repository browser.