| 1 | ;;; -*- Mode: Lisp -*-
|
|---|
| 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|---|
| 3 | ;;;
|
|---|
| 4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
|---|
| 5 | ;;;
|
|---|
| 6 | ;;; This program is free software; you can redistribute it and/or modify
|
|---|
| 7 | ;;; it under the terms of the GNU General Public License as published by
|
|---|
| 8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
|---|
| 9 | ;;; (at your option) any later version.
|
|---|
| 10 | ;;;
|
|---|
| 11 | ;;; This program is distributed in the hope that it will be useful,
|
|---|
| 12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|---|
| 13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|---|
| 14 | ;;; GNU General Public License for more details.
|
|---|
| 15 | ;;;
|
|---|
| 16 | ;;; You should have received a copy of the GNU General Public License
|
|---|
| 17 | ;;; along with this program; if not, write to the Free Software
|
|---|
| 18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|---|
| 19 | ;;;
|
|---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|---|
| 21 |
|
|---|
| 22 | (defpackage "MONOM"
|
|---|
| 23 | (:use :cl :copy)
|
|---|
| 24 | (:export "MONOM"
|
|---|
| 25 | "EXPONENT"
|
|---|
| 26 | "MONOM-DIMENSION"
|
|---|
| 27 | "MONOM-EXPONENTS"
|
|---|
| 28 | "MONOM-EQUALP"
|
|---|
| 29 | "MONOM-ELT"
|
|---|
| 30 | "MONOM-TOTAL-DEGREE"
|
|---|
| 31 | "MONOM-SUGAR"
|
|---|
| 32 | "MONOM-MULTIPLY-BY"
|
|---|
| 33 | "MONOM-DIVIDE-BY"
|
|---|
| 34 | "MONOM-COPY-INSTANCE"
|
|---|
| 35 | "MONOM-MULTIPLY-2"
|
|---|
| 36 | "MONOM-MULTIPLY"
|
|---|
| 37 | "MONOM-DIVIDES-P"
|
|---|
| 38 | "MONOM-DIVIDES-LCM-P"
|
|---|
| 39 | "MONOM-LCM-DIVIDES-LCM-P"
|
|---|
| 40 | "MONOM-LCM-EQUAL-LCM-P"
|
|---|
| 41 | "MONOM-DIVISIBLE-BY-P"
|
|---|
| 42 | "MONOM-REL-PRIME-P"
|
|---|
| 43 | "MONOM-LCM"
|
|---|
| 44 | "MONOM-GCD"
|
|---|
| 45 | "MONOM-DEPENDS-P"
|
|---|
| 46 | "MONOM-LEFT-TENSOR-PRODUCT-BY"
|
|---|
| 47 | "MONOM-RIGHT-TENSOR-PRODUCT-BY"
|
|---|
| 48 | "MONOM-LEFT-CONTRACT"
|
|---|
| 49 | "MAKE-MONOM-VARIABLE"
|
|---|
| 50 | "MONOM->LIST"
|
|---|
| 51 | "LEX>"
|
|---|
| 52 | "GRLEX>"
|
|---|
| 53 | "REVLEX>"
|
|---|
| 54 | "GREVLEX>"
|
|---|
| 55 | "INVLEX>"
|
|---|
| 56 | "REVERSE-MONOMIAL-ORDER"
|
|---|
| 57 | "MAKE-ELIMINATION-ORDER-FACTORY")
|
|---|
| 58 | (:documentation
|
|---|
| 59 | "This package implements basic operations on monomials, including
|
|---|
| 60 | various monomial orders.
|
|---|
| 61 |
|
|---|
| 62 | DATA STRUCTURES: Conceptually, monomials can be represented as lists:
|
|---|
| 63 |
|
|---|
| 64 | monom: (n1 n2 ... nk) where ni are non-negative integers
|
|---|
| 65 |
|
|---|
| 66 | However, lists may be implemented as other sequence types, so the
|
|---|
| 67 | flexibility to change the representation should be maintained in the
|
|---|
| 68 | code to use general operations on sequences whenever possible. The
|
|---|
| 69 | optimization for the actual representation should be left to
|
|---|
| 70 | declarations and the compiler.
|
|---|
| 71 |
|
|---|
| 72 | EXAMPLES: Suppose that variables are x and y. Then
|
|---|
| 73 |
|
|---|
| 74 | Monom x*y^2 ---> (1 2) "))
|
|---|
| 75 |
|
|---|
| 76 | (in-package :monom)
|
|---|
| 77 |
|
|---|
| 78 | (proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
|
|---|
| 79 |
|
|---|
| 80 | (deftype exponent ()
|
|---|
| 81 | "Type of exponent in a monomial."
|
|---|
| 82 | 'fixnum)
|
|---|
| 83 |
|
|---|
| 84 | (defclass monom ()
|
|---|
| 85 | ((exponents :initarg :exponents :accessor monom-exponents
|
|---|
| 86 | :documentation "The powers of the variables."))
|
|---|
| 87 | ;; default-initargs are not needed, they are handled by SHARED-INITIALIZE
|
|---|
| 88 | ;;(:default-initargs :dimension 'foo :exponents 'bar :exponent 'baz)
|
|---|
| 89 | (:documentation
|
|---|
| 90 | "Implements a monomial, i.e. a product of powers
|
|---|
| 91 | of variables, like X*Y^2."))
|
|---|
| 92 |
|
|---|
| 93 | (defmethod print-object ((self monom) stream)
|
|---|
| 94 | (print-unreadable-object (self stream :type t :identity t)
|
|---|
| 95 | (with-accessors ((exponents monom-exponents))
|
|---|
| 96 | self
|
|---|
| 97 | (format stream "EXPONENTS=~A"
|
|---|
| 98 | exponents))))
|
|---|
| 99 |
|
|---|
| 100 | (defmethod initialize-instance :after ((self monom)
|
|---|
| 101 | &key
|
|---|
| 102 | (dimension 0 dimension-supplied-p)
|
|---|
| 103 | (exponents nil exponents-supplied-p)
|
|---|
| 104 | (exponent 0)
|
|---|
| 105 | &allow-other-keys
|
|---|
| 106 | )
|
|---|
| 107 | "The following INITIALIZE-INSTANCE method allows instance initialization
|
|---|
| 108 | of a MONOM in a style similar to MAKE-ARRAY, e.g.:
|
|---|
| 109 |
|
|---|
| 110 | (MAKE-INSTANCE :EXPONENTS '(1 2 3)) --> #<MONOM EXPONENTS=#(1 2 3)>
|
|---|
| 111 | (MAKE-INSTANCE :DIMENSION 3) --> #<MONOM EXPONENTS=#(0 0 0)>
|
|---|
| 112 | (MAKE-INSTANCE :DIMENSION 3 :EXPONENT 7) --> #<MONOM EXPONENTS=#(7 7 7)>
|
|---|
| 113 |
|
|---|
| 114 | If both DIMENSION and EXPONENTS are supplied, they must be compatible,
|
|---|
| 115 | i.e. the length of EXPONENTS must be equal DIMENSION. If EXPONENTS
|
|---|
| 116 | is not supplied, a monom with repeated value EXPONENT is created.
|
|---|
| 117 | By default EXPONENT is 0, which results in a constant monomial.
|
|---|
| 118 | "
|
|---|
| 119 | (cond
|
|---|
| 120 | (exponents-supplied-p
|
|---|
| 121 | (when (and dimension-supplied-p
|
|---|
| 122 | (/= dimension (length exponents)))
|
|---|
| 123 | (error "EXPONENTS (~A) must have supplied length DIMENSION (~A)"
|
|---|
| 124 | exponents dimension))
|
|---|
| 125 | (let ((dim (length exponents)))
|
|---|
| 126 | (setf (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
|
|---|
| 127 | (dimension-supplied-p
|
|---|
| 128 | ;; when all exponents are to be identical
|
|---|
| 129 | (setf (slot-value self 'exponents) (make-array (list dimension)
|
|---|
| 130 | :initial-element exponent
|
|---|
| 131 | :element-type 'exponent)))
|
|---|
| 132 | (t
|
|---|
| 133 | (error "Initarg DIMENSION or EXPONENTS must be supplied."))))
|
|---|
| 134 |
|
|---|
| 135 | (defgeneric monom-dimension (m)
|
|---|
| 136 | (:method ((m monom))
|
|---|
| 137 | (length (monom-exponents m))))
|
|---|
| 138 |
|
|---|
| 139 | (defgeneric universal-equalp (object1 object2)
|
|---|
| 140 | (:documentation "Returns T iff OBJECT1 and OBJECT2 are equal.")
|
|---|
| 141 | (:method ((m1 monom) (m2 monom))
|
|---|
| 142 | "Returns T iff monomials M1 and M2 have identical EXPONENTS."
|
|---|
| 143 | (equalp (monom-exponents m1) (monom-exponents m2))))
|
|---|
| 144 |
|
|---|
| 145 | (defgeneric monom-elt (m index)
|
|---|
| 146 | (:documentation
|
|---|
| 147 | "Return the power in the monomial M of variable number INDEX.")
|
|---|
| 148 | (:method ((m monom) index)
|
|---|
| 149 | (with-slots (exponents)
|
|---|
| 150 | m
|
|---|
| 151 | (elt exponents index))))
|
|---|
| 152 |
|
|---|
| 153 | (defgeneric (setf monom-elt) (new-value m index)
|
|---|
| 154 | (:documentation "Return the power in the monomial M of variable number INDEX.")
|
|---|
| 155 | (:method (new-value (m monom) index)
|
|---|
| 156 | (with-slots (exponents)
|
|---|
| 157 | m
|
|---|
| 158 | (setf (elt exponents index) new-value))))
|
|---|
| 159 |
|
|---|
| 160 | (defgeneric universal-total-degree (m &optional start end)
|
|---|
| 161 | (:documentation "Return the todal degree of a monomoal M. Optinally, a range
|
|---|
| 162 | of variables may be specified with arguments START and END.")
|
|---|
| 163 | (:method ((m monom) &optional (start 0) (end (monom-dimension m)))
|
|---|
| 164 | (declare (type fixnum start end))
|
|---|
| 165 | (with-slots (exponents)
|
|---|
| 166 | m
|
|---|
| 167 | (reduce #'+ exponents :start start :end end))))
|
|---|
| 168 |
|
|---|
| 169 | (defgeneric universal-sugar (m &optional start end)
|
|---|
| 170 | (:documentation "Return the sugar of a monomial M. Optinally, a range
|
|---|
| 171 | of variables may be specified with arguments START and END.")
|
|---|
| 172 | (:method ((m monom) &optional (start 0) (end (monom-dimension m)))
|
|---|
| 173 | (declare (type fixnum start end))
|
|---|
| 174 | (universal-total-degree m start end)))
|
|---|
| 175 |
|
|---|
| 176 | (defgeneric universal-multiply-by (self other)
|
|---|
| 177 | (:method ((self monom) (other monom))
|
|---|
| 178 | (with-slots ((exponents1 exponents))
|
|---|
| 179 | self
|
|---|
| 180 | (with-slots ((exponents2 exponents))
|
|---|
| 181 | other
|
|---|
| 182 | (unless (= (length exponents1) (length exponents2))
|
|---|
| 183 | (error "Incompatible dimensions"))
|
|---|
| 184 | (map-into exponents1 #'+ exponents1 exponents2)))
|
|---|
| 185 | self))
|
|---|
| 186 |
|
|---|
| 187 | (defgeneric universal-divide-by (self other)
|
|---|
| 188 | (:documentation "Divide SELF by OTHER, return SELF.")
|
|---|
| 189 | (:method ((self monom) (other monom))
|
|---|
| 190 | (with-slots ((exponents1 exponents))
|
|---|
| 191 | self
|
|---|
| 192 | (with-slots ((exponents2 exponents))
|
|---|
| 193 | other
|
|---|
| 194 | (unless (= (length exponents1) (length exponents2))
|
|---|
| 195 | (error "divide-by: Incompatible dimensions."))
|
|---|
| 196 | (unless (every #'>= exponents1 exponents2)
|
|---|
| 197 | (error "divide-by: Negative power would result."))
|
|---|
| 198 | (map-into exponents1 #'- exponents1 exponents2)))
|
|---|
| 199 | self))
|
|---|
| 200 |
|
|---|
| 201 | (defmethod copy-instance :around ((object monom) &rest initargs &key &allow-other-keys)
|
|---|
| 202 | "An :AROUND method of COPY-INSTANCE. It replaces
|
|---|
| 203 | exponents with a fresh copy of the sequence."
|
|---|
| 204 | (declare (ignore object initargs))
|
|---|
| 205 | (let ((copy (call-next-method)))
|
|---|
| 206 | (setf (monom-exponents copy) (copy-seq (monom-exponents copy)))
|
|---|
| 207 | copy))
|
|---|
| 208 |
|
|---|
| 209 | (defgeneric universal-multiply-2 (object1 object2)
|
|---|
| 210 | (:documentation "Multiply OBJECT1 by OBJECT2")
|
|---|
| 211 | (:method (object1 object2)
|
|---|
| 212 | (universal-multiply-by (copy-instance object1) (copy-instance object2))))
|
|---|
| 213 |
|
|---|
| 214 | (defgeneric universal-divide (numerator &rest denominators)
|
|---|
| 215 | (:documentation "Non-destructively divide object NUMERATOR by product of DENOMINATORS.")
|
|---|
| 216 | (:method ((numerator monom) &rest denominators)
|
|---|
| 217 | (universal-divide-by (copy-instance numerator) (reduce #'universal-multiply-2 denominators))))
|
|---|
| 218 |
|
|---|
| 219 | (defmethod monom-divides-p ((m1 monom) (m2 monom))
|
|---|
| 220 | "Returns T if monomial M1 divides monomial M2, NIL otherwise."
|
|---|
| 221 | (with-slots ((exponents1 exponents))
|
|---|
| 222 | m1
|
|---|
| 223 | (with-slots ((exponents2 exponents))
|
|---|
| 224 | m2
|
|---|
| 225 | (every #'<= exponents1 exponents2))))
|
|---|
| 226 |
|
|---|
| 227 |
|
|---|
| 228 | (defmethod monom-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
|
|---|
| 229 | "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
|
|---|
| 230 | (every #'(lambda (x y z) (<= x (max y z)))
|
|---|
| 231 | m1 m2 m3))
|
|---|
| 232 |
|
|---|
| 233 | (defmethod monom-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
|
|---|
| 234 | "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
|
|---|
| 235 | (declare (type monom m1 m2 m3 m4))
|
|---|
| 236 | (every #'(lambda (x y z w) (<= (max x y) (max z w)))
|
|---|
| 237 | m1 m2 m3 m4))
|
|---|
| 238 |
|
|---|
| 239 | (defmethod monom-lcm-equal-lcm-p (m1 m2 m3 m4)
|
|---|
| 240 | "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
|
|---|
| 241 | (with-slots ((exponents1 exponents))
|
|---|
| 242 | m1
|
|---|
| 243 | (with-slots ((exponents2 exponents))
|
|---|
| 244 | m2
|
|---|
| 245 | (with-slots ((exponents3 exponents))
|
|---|
| 246 | m3
|
|---|
| 247 | (with-slots ((exponents4 exponents))
|
|---|
| 248 | m4
|
|---|
| 249 | (every
|
|---|
| 250 | #'(lambda (x y z w) (= (max x y) (max z w)))
|
|---|
| 251 | exponents1 exponents2 exponents3 exponents4))))))
|
|---|
| 252 |
|
|---|
| 253 | (defmethod monom-divisible-by-p ((m1 monom) (m2 monom))
|
|---|
| 254 | "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
|
|---|
| 255 | (with-slots ((exponents1 exponents))
|
|---|
| 256 | m1
|
|---|
| 257 | (with-slots ((exponents2 exponents))
|
|---|
| 258 | m2
|
|---|
| 259 | (every #'>= exponents1 exponents2))))
|
|---|
| 260 |
|
|---|
| 261 | (defmethod monom-rel-prime-p ((m1 monom) (m2 monom))
|
|---|
| 262 | "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
|
|---|
| 263 | (with-slots ((exponents1 exponents))
|
|---|
| 264 | m1
|
|---|
| 265 | (with-slots ((exponents2 exponents))
|
|---|
| 266 | m2
|
|---|
| 267 | (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
|
|---|
| 268 |
|
|---|
| 269 |
|
|---|
| 270 | (defmethod monom-lcm ((m1 monom) (m2 monom))
|
|---|
| 271 | "Returns least common multiple of monomials M1 and M2."
|
|---|
| 272 | (with-slots ((exponents1 exponents))
|
|---|
| 273 | m1
|
|---|
| 274 | (with-slots ((exponents2 exponents))
|
|---|
| 275 | m2
|
|---|
| 276 | (let* ((exponents (copy-seq exponents1)))
|
|---|
| 277 | (map-into exponents #'max exponents1 exponents2)
|
|---|
| 278 | (make-instance 'monom :exponents exponents)))))
|
|---|
| 279 |
|
|---|
| 280 |
|
|---|
| 281 | (defmethod monom-gcd ((m1 monom) (m2 monom))
|
|---|
| 282 | "Returns greatest common divisor of monomials M1 and M2."
|
|---|
| 283 | (with-slots ((exponents1 exponents))
|
|---|
| 284 | m1
|
|---|
| 285 | (with-slots ((exponents2 exponents))
|
|---|
| 286 | m2
|
|---|
| 287 | (let* ((exponents (copy-seq exponents1)))
|
|---|
| 288 | (map-into exponents #'min exponents1 exponents2)
|
|---|
| 289 | (make-instance 'monom :exponents exponents)))))
|
|---|
| 290 |
|
|---|
| 291 | (defmethod monom-depends-p ((m monom) k)
|
|---|
| 292 | "Return T if the monomial M depends on variable number K."
|
|---|
| 293 | (declare (type fixnum k))
|
|---|
| 294 | (with-slots (exponents)
|
|---|
| 295 | m
|
|---|
| 296 | (plusp (elt exponents k))))
|
|---|
| 297 |
|
|---|
| 298 | (defmethod monom-left-tensor-product-by ((self monom) (other monom))
|
|---|
| 299 | (with-slots ((exponents1 exponents))
|
|---|
| 300 | self
|
|---|
| 301 | (with-slots ((exponents2 exponents))
|
|---|
| 302 | other
|
|---|
| 303 | (setf exponents1 (concatenate 'vector exponents2 exponents1))))
|
|---|
| 304 | self)
|
|---|
| 305 |
|
|---|
| 306 | (defmethod monom-right-tensor-product-by ((self monom) (other monom))
|
|---|
| 307 | (with-slots ((exponents1 exponents))
|
|---|
| 308 | self
|
|---|
| 309 | (with-slots ((exponents2 exponents))
|
|---|
| 310 | other
|
|---|
| 311 | (setf exponents1 (concatenate 'vector exponents1 exponents2))))
|
|---|
| 312 | self)
|
|---|
| 313 |
|
|---|
| 314 | (defmethod monom-left-contract ((self monom) k)
|
|---|
| 315 | "Drop the first K variables in monomial M."
|
|---|
| 316 | (declare (fixnum k))
|
|---|
| 317 | (with-slots (exponents)
|
|---|
| 318 | self
|
|---|
| 319 | (setf exponents (subseq exponents k)))
|
|---|
| 320 | self)
|
|---|
| 321 |
|
|---|
| 322 | (defun make-monom-variable (nvars pos &optional (power 1)
|
|---|
| 323 | &aux (m (make-instance 'monom :dimension nvars)))
|
|---|
| 324 | "Construct a monomial in the polynomial ring
|
|---|
| 325 | RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
|
|---|
| 326 | which represents a single variable. It assumes number of variables
|
|---|
| 327 | NVARS and the variable is at position POS. Optionally, the variable
|
|---|
| 328 | may appear raised to power POWER. "
|
|---|
| 329 | (declare (type fixnum nvars pos power) (type monom m))
|
|---|
| 330 | (with-slots (exponents)
|
|---|
| 331 | m
|
|---|
| 332 | (setf (elt exponents pos) power)
|
|---|
| 333 | m))
|
|---|
| 334 |
|
|---|
| 335 | (defmethod monom->list ((m monom))
|
|---|
| 336 | "A human-readable representation of a monomial M as a list of exponents."
|
|---|
| 337 | (coerce (monom-exponents m) 'list))
|
|---|
| 338 |
|
|---|
| 339 |
|
|---|
| 340 | ;; pure lexicographic
|
|---|
| 341 | (defgeneric lex> (p q &optional start end)
|
|---|
| 342 | (:documentation "Return T if P>Q with respect to lexicographic
|
|---|
| 343 | order, otherwise NIL. The second returned value is T if P=Q,
|
|---|
| 344 | otherwise it is NIL.")
|
|---|
| 345 | (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
|
|---|
| 346 | (declare (type fixnum start end))
|
|---|
| 347 | (do ((i start (1+ i)))
|
|---|
| 348 | ((>= i end) (values nil t))
|
|---|
| 349 | (cond
|
|---|
| 350 | ((> (monom-elt p i) (monom-elt q i))
|
|---|
| 351 | (return-from lex> (values t nil)))
|
|---|
| 352 | ((< (monom-elt p i) (monom-elt q i))
|
|---|
| 353 | (return-from lex> (values nil nil)))))))
|
|---|
| 354 |
|
|---|
| 355 | ;; total degree order, ties broken by lexicographic
|
|---|
| 356 | (defgeneric grlex> (p q &optional start end)
|
|---|
| 357 | (:documentation "Return T if P>Q with respect to graded
|
|---|
| 358 | lexicographic order, otherwise NIL. The second returned value is T if
|
|---|
| 359 | P=Q, otherwise it is NIL.")
|
|---|
| 360 | (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
|
|---|
| 361 | (declare (type monom p q) (type fixnum start end))
|
|---|
| 362 | (let ((d1 (monom-total-degree p start end))
|
|---|
| 363 | (d2 (monom-total-degree q start end)))
|
|---|
| 364 | (declare (type fixnum d1 d2))
|
|---|
| 365 | (cond
|
|---|
| 366 | ((> d1 d2) (values t nil))
|
|---|
| 367 | ((< d1 d2) (values nil nil))
|
|---|
| 368 | (t
|
|---|
| 369 | (lex> p q start end))))))
|
|---|
| 370 |
|
|---|
| 371 | ;; reverse lexicographic
|
|---|
| 372 | (defgeneric revlex> (p q &optional start end)
|
|---|
| 373 | (:documentation "Return T if P>Q with respect to reverse
|
|---|
| 374 | lexicographic order, NIL otherwise. The second returned value is T if
|
|---|
| 375 | P=Q, otherwise it is NIL. This is not and admissible monomial order
|
|---|
| 376 | because some sets do not have a minimal element. This order is useful
|
|---|
| 377 | in constructing other orders.")
|
|---|
| 378 | (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
|
|---|
| 379 | (declare (type fixnum start end))
|
|---|
| 380 | (do ((i (1- end) (1- i)))
|
|---|
| 381 | ((< i start) (values nil t))
|
|---|
| 382 | (declare (type fixnum i))
|
|---|
| 383 | (cond
|
|---|
| 384 | ((< (monom-elt p i) (monom-elt q i))
|
|---|
| 385 | (return-from revlex> (values t nil)))
|
|---|
| 386 | ((> (monom-elt p i) (monom-elt q i))
|
|---|
| 387 | (return-from revlex> (values nil nil)))))))
|
|---|
| 388 |
|
|---|
| 389 |
|
|---|
| 390 | ;; total degree, ties broken by reverse lexicographic
|
|---|
| 391 | (defgeneric grevlex> (p q &optional start end)
|
|---|
| 392 | (:documentation "Return T if P>Q with respect to graded reverse
|
|---|
| 393 | lexicographic order, NIL otherwise. The second returned value is T if
|
|---|
| 394 | P=Q, otherwise it is NIL.")
|
|---|
| 395 | (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
|
|---|
| 396 | (declare (type fixnum start end))
|
|---|
| 397 | (let ((d1 (monom-total-degree p start end))
|
|---|
| 398 | (d2 (monom-total-degree q start end)))
|
|---|
| 399 | (declare (type fixnum d1 d2))
|
|---|
| 400 | (cond
|
|---|
| 401 | ((> d1 d2) (values t nil))
|
|---|
| 402 | ((< d1 d2) (values nil nil))
|
|---|
| 403 | (t
|
|---|
| 404 | (revlex> p q start end))))))
|
|---|
| 405 |
|
|---|
| 406 | (defgeneric invlex> (p q &optional start end)
|
|---|
| 407 | (:documentation "Return T if P>Q with respect to inverse
|
|---|
| 408 | lexicographic order, NIL otherwise The second returned value is T if
|
|---|
| 409 | P=Q, otherwise it is NIL.")
|
|---|
| 410 | (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
|
|---|
| 411 | (declare (type fixnum start end))
|
|---|
| 412 | (do ((i (1- end) (1- i)))
|
|---|
| 413 | ((< i start) (values nil t))
|
|---|
| 414 | (declare (type fixnum i))
|
|---|
| 415 | (cond
|
|---|
| 416 | ((> (monom-elt p i) (monom-elt q i))
|
|---|
| 417 | (return-from invlex> (values t nil)))
|
|---|
| 418 | ((< (monom-elt p i) (monom-elt q i))
|
|---|
| 419 | (return-from invlex> (values nil nil)))))))
|
|---|
| 420 |
|
|---|
| 421 | (defun reverse-monomial-order (order)
|
|---|
| 422 | "Create the inverse monomial order to the given monomial order ORDER."
|
|---|
| 423 | #'(lambda (p q &optional (start 0) (end (monom-dimension q)))
|
|---|
| 424 | (declare (type monom p q) (type fixnum start end))
|
|---|
| 425 | (funcall order q p start end)))
|
|---|
| 426 |
|
|---|
| 427 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|---|
| 428 | ;;
|
|---|
| 429 | ;; Order making functions
|
|---|
| 430 | ;;
|
|---|
| 431 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|---|
| 432 |
|
|---|
| 433 | ;; This returns a closure with the same signature
|
|---|
| 434 | ;; as all orders such as #'LEX>.
|
|---|
| 435 | (defun make-elimination-order-factory-1 (&optional (secondary-elimination-order #'lex>))
|
|---|
| 436 | "It constructs an elimination order used for the 1-st elimination ideal,
|
|---|
| 437 | i.e. for eliminating the first variable. Thus, the order compares the degrees of the
|
|---|
| 438 | first variable in P and Q first, with ties broken by SECONDARY-ELIMINATION-ORDER."
|
|---|
| 439 | #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
|
|---|
| 440 | (declare (type monom p q) (type fixnum start end))
|
|---|
| 441 | (cond
|
|---|
| 442 | ((> (monom-elt p start) (monom-elt q start))
|
|---|
| 443 | (values t nil))
|
|---|
| 444 | ((< (monom-elt p start) (monom-elt q start))
|
|---|
| 445 | (values nil nil))
|
|---|
| 446 | (t
|
|---|
| 447 | (funcall secondary-elimination-order p q (1+ start) end)))))
|
|---|
| 448 |
|
|---|
| 449 | ;; This returns a closure which is called with an integer argument.
|
|---|
| 450 | ;; The result is *another closure* with the same signature as all
|
|---|
| 451 | ;; orders such as #'LEX>.
|
|---|
| 452 | (defun make-elimination-order-factory (&optional
|
|---|
| 453 | (primary-elimination-order #'lex>)
|
|---|
| 454 | (secondary-elimination-order #'lex>))
|
|---|
| 455 | "Return a function with a single integer argument K. This should be
|
|---|
| 456 | the number of initial K variables X[0],X[1],...,X[K-1], which precede
|
|---|
| 457 | remaining variables. The call to the closure creates a predicate
|
|---|
| 458 | which compares monomials according to the K-th elimination order. The
|
|---|
| 459 | monomial orders PRIMARY-ELIMINATION-ORDER and
|
|---|
| 460 | SECONDARY-ELIMINATION-ORDER are used to compare the first K and the
|
|---|
| 461 | remaining variables, respectively, with ties broken by lexicographical
|
|---|
| 462 | order. That is, if PRIMARY-ELIMINATION-ORDER yields (VALUES NIL T),
|
|---|
| 463 | which indicates that the first K variables appear with identical
|
|---|
| 464 | powers, then the result is that of a call to
|
|---|
| 465 | SECONDARY-ELIMINATION-ORDER applied to the remaining variables
|
|---|
| 466 | X[K],X[K+1],..."
|
|---|
| 467 | #'(lambda (k)
|
|---|
| 468 | (cond
|
|---|
| 469 | ((<= k 0)
|
|---|
| 470 | (error "K must be at least 1"))
|
|---|
| 471 | ((= k 1)
|
|---|
| 472 | (make-elimination-order-factory-1 secondary-elimination-order))
|
|---|
| 473 | (t
|
|---|
| 474 | #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
|
|---|
| 475 | (declare (type monom p q) (type fixnum start end))
|
|---|
| 476 | (multiple-value-bind (primary equal)
|
|---|
| 477 | (funcall primary-elimination-order p q start k)
|
|---|
| 478 | (if equal
|
|---|
| 479 | (funcall secondary-elimination-order p q k end)
|
|---|
| 480 | (values primary nil))))))))
|
|---|
| 481 |
|
|---|
| 482 | (defclass term (monom)
|
|---|
| 483 | ((coeff :initarg :coeff :accessor term-coeff))
|
|---|
| 484 | (:default-initargs :coeff nil)
|
|---|
| 485 | (:documentation "Implements a term, i.e. a product of a scalar
|
|---|
| 486 | and powers of some variables, such as 5*X^2*Y^3."))
|
|---|
| 487 |
|
|---|
| 488 | (defmethod print-object ((self term) stream)
|
|---|
| 489 | (print-unreadable-object (self stream :type t :identity t)
|
|---|
| 490 | (with-accessors ((exponents monom-exponents)
|
|---|
| 491 | (coeff term-coeff))
|
|---|
| 492 | self
|
|---|
| 493 | (format stream "EXPONENTS=~A COEFF=~A"
|
|---|
| 494 | exponents coeff))))
|
|---|
| 495 |
|
|---|
| 496 | (defmethod universal-equalp ((term1 term) (term2 term))
|
|---|
| 497 | "Returns T if TERM1 and TERM2 are equal as MONOM, and coefficients
|
|---|
| 498 | are UNIVERSAL-EQUALP."
|
|---|
| 499 | (and (call-next-method)
|
|---|
| 500 | (universal-equalp (term-coeff term1) (term-coeff term2))))
|
|---|
| 501 |
|
|---|
| 502 | (defmethod update-instance-for-different-class :after ((old monom) (new term) &key)
|
|---|
| 503 | (setf (term-coeff new) 1))
|
|---|
| 504 |
|
|---|
| 505 | (defmethod term-multiply-by ((self term) (other term))
|
|---|
| 506 | "Destructively multiply terms SELF and OTHER and store the result into SELF.
|
|---|
| 507 | It returns SELF."
|
|---|
| 508 | (setf (term-coeff self) (universal-multiply-by (term-coeff self) (scalar-coeff other))))
|
|---|
| 509 |
|
|---|
| 510 | (defmethod term-left-tensor-product-by ((self term) (other term))
|
|---|
| 511 | (setf (term-coeff self) (universal-multiply-by (term-coeff self) (term-coeff other)))
|
|---|
| 512 | (call-next-method))
|
|---|
| 513 |
|
|---|
| 514 | (defmethod term-right-tensor-product-by ((self term) (other term))
|
|---|
| 515 | (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other)))
|
|---|
| 516 | (call-next-method))
|
|---|
| 517 |
|
|---|
| 518 | (defmethod monom-divide-by ((self term) (other term))
|
|---|
| 519 | "Destructively divide term SELF by OTHER and store the result into SELF.
|
|---|
| 520 | It returns SELF."
|
|---|
| 521 | (setf (term-coeff self) (divide-by (term-coeff self) (term-coeff other)))
|
|---|
| 522 | (call-next-method))
|
|---|
| 523 |
|
|---|
| 524 | (defmethod monom-unary-minus ((self term))
|
|---|
| 525 | (setf (term-coeff self) (monom-unary-minus (term-coeff self)))
|
|---|
| 526 | self)
|
|---|
| 527 |
|
|---|
| 528 | (defmethod monom-multiply ((term1 term) (term2 term))
|
|---|
| 529 | "Non-destructively multiply TERM1 by TERM2."
|
|---|
| 530 | (monom-multiply-by (copy-instance term1) (copy-instance term2)))
|
|---|
| 531 |
|
|---|
| 532 | (defmethod monom-multiply ((term1 number) (term2 monom))
|
|---|
| 533 | "Non-destructively multiply TERM1 by TERM2."
|
|---|
| 534 | (monom-multiply term1 (change-class (copy-instance term2) 'term)))
|
|---|
| 535 |
|
|---|
| 536 | (defmethod monom-zerop ((self term))
|
|---|
| 537 | (zerop (term-coeff self)))
|
|---|