close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 3301

Last change on this file since 3301 was 3301, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 11.1 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "MONOM"
23 (:use :cl :ring)
24 (:export "MONOM"
25 "EXPONENT"
26 "MONOM-DIMENSION"
27 "MONOM-EXPONENTS"
28 "MAKE-MONOM-VARIABLE")
29 (:documentation
30 "This package implements basic operations on monomials.
31DATA STRUCTURES: Conceptually, monomials can be represented as lists:
32
33 monom: (n1 n2 ... nk) where ni are non-negative integers
34
35However, lists may be implemented as other sequence types, so the
36flexibility to change the representation should be maintained in the
37code to use general operations on sequences whenever possible. The
38optimization for the actual representation should be left to
39declarations and the compiler.
40
41EXAMPLES: Suppose that variables are x and y. Then
42
43 Monom x*y^2 ---> (1 2) "))
44
45(in-package :monom)
46
47(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
48
49(deftype exponent ()
50 "Type of exponent in a monomial."
51 'fixnum)
52
53(defclass monom ()
54 ((dimension :initarg :dimension :accessor monom-dimension
55 :documentation "The number of variables.")
56 (exponents :initarg :exponents :accessor monom-exponents
57 :documentation "The powers of the variables."))
58 ;; default-initargs are not needed, they are handled by SHARED-INITIALIZE
59 ;;(:default-initargs :dimension 'foo :exponents 'bar :exponent 'baz)
60 (:documentation
61 "Implements a monomial, i.e. a product of powers
62of variables, like X*Y^2."))
63
64(defmethod print-object ((self monom) stream)
65 (print-unreadable-object (self stream :type t :identity t)
66 (with-accessors ((dimension monom-dimension) (exponents monom-exponents))
67 self
68 (format stream "DIMENSION=~A EXPONENTS=~A"
69 dimension exponents))))
70
71;; The following INITIALIZE-INSTANCE method allows instance
72;; initialization in a style similar to MAKE-ARRAY, e.g.
73;;
74;; (MAKE-INSTANCE :EXPONENTS '(1 2 3)) --> #<MONOM DIMENSION=3 EXPONENTS=#(1 2 3)>
75;; (MAKE-INSTANCE :DIMENSION 3) --> #<MONOM DIMENSION=3 EXPONENTS=#(0 0 0)>
76;; (MAKE-INSTANCE :DIMENSION 3 :EXPONENT 7) --> #<MONOM DIMENSION=3 EXPONENTS=#(7 7 7)>
77;;
78(defmethod initialize-instance :after ((self monom)
79 &key
80 (dimension 0 dimension-supplied-p)
81 (exponents nil exponents-supplied-p)
82 (exponent 0 exponent-supplied-p)
83 &allow-other-keys
84 )
85 (when dimension-supplied-p
86 (setf (slot-value self 'dimension) dimension))
87
88 (when exponents-supplied-p
89 (let ((dim (length exponents)))
90 (when (/= (slot-value self 'dimension) dim)
91 (error "EXPONENTS must have length DIMENSION"))
92 (setf (slot-value self 'dimension) dim
93 (slot-value self 'exponents) (make-array dim :initial-contents exponents))
94 (setf (slot-value self 'dimension) (length exponents))))
95
96 ;; when all exponents are to be identical
97 (when exponent-supplied-p
98 (unless (slot-boundp self 'dimension)
99 (error "Slot DIMENSION is unbound, but must be known if EXPONENT is supplied."))
100 (let ((dim (slot-value self 'dimension)))
101 (setf (slot-value self 'exponents)
102 (make-array (list dim) :initial-element exponent
103 :element-type 'exponent)))))
104
105(defmethod r-equalp ((m1 monom) (m2 monom))
106 "Returns T iff monomials M1 and M2 have identical
107EXPONENTS."
108 (equalp (monom-exponents m1) (monom-exponents m2)))
109
110(defmethod r-coeff ((m monom))
111 "A MONOM can be treated as a special case of TERM,
112where the coefficient is 1."
113 1)
114
115(defmethod r-elt ((m monom) index)
116 "Return the power in the monomial M of variable number INDEX."
117 (with-slots (exponents)
118 m
119 (elt exponents index)))
120
121(defmethod (setf r-elt) (new-value (m monom) index)
122 "Return the power in the monomial M of variable number INDEX."
123 (with-slots (exponents)
124 m
125 (setf (elt exponents index) new-value)))
126
127(defmethod r-total-degree ((m monom) &optional (start 0) (end (monom-dimension m)))
128 "Return the todal degree of a monomoal M. Optinally, a range
129of variables may be specified with arguments START and END."
130 (declare (type fixnum start end))
131 (with-slots (exponents)
132 m
133 (reduce #'+ exponents :start start :end end)))
134
135
136(defmethod r-sugar ((m monom) &aux (start 0) (end (monom-dimension m)))
137 "Return the sugar of a monomial M. Optinally, a range
138of variables may be specified with arguments START and END."
139 (declare (type fixnum start end))
140 (r-total-degree m start end))
141
142(defmethod multiply-by ((self monom) (other monom))
143 (with-slots ((exponents1 exponents) (dimension1 dimension))
144 self
145 (with-slots ((exponents2 exponents) (dimension2 dimension))
146 other
147 (unless (= dimension1 dimension2)
148 (error "Incompatible dimensions: ~A and ~A.~%" dimension1 dimension2))
149 (map-into exponents1 #'+ exponents1 exponents2)))
150 self)
151
152(defmethod divide-by ((self monom) (other monom))
153 (with-slots ((exponents1 exponents) (dimension1 dimension))
154 self
155 (with-slots ((exponents2 exponents) (dimension2 dimension))
156 other
157 (unless (= dimension1 dimension2)
158 (error "Incompatible dimensions: ~A and ~A.~%" dimension1 dimension2))
159 (map-into exponents1 #'- exponents1 exponents2)))
160 self)
161
162(defmethod copy-instance :around ((object monom) &rest initargs &key &allow-other-keys)
163 "An :AROUNT method for COPY-INSTANCE. The primary method is a shallow copy,
164 while for monomials we typically need a fresh copy of the
165 exponents."
166 (declare (ignore object initargs))
167 (let ((copy (call-next-method)))
168 (setf (monom-exponents copy) (copy-seq (monom-exponents copy)))
169 copy))
170
171(defmethod r* ((m1 monom) (m2 monom))
172 "Non-destructively multiply monomial M1 by M2."
173 (multiply-by (copy-instance m1) (copy-instance m2)))
174
175(defmethod r/ ((m1 monom) (m2 monom))
176 "Non-destructively divide monomial M1 by monomial M2."
177 (divide-by (copy-instance m1) (copy-instance m2)))
178
179(defmethod r-divides-p ((m1 monom) (m2 monom))
180 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
181 (with-slots ((exponents1 exponents))
182 m1
183 (with-slots ((exponents2 exponents))
184 m2
185 (every #'<= exponents1 exponents2))))
186
187
188(defmethod r-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
189 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
190 (every #'(lambda (x y z) (<= x (max y z)))
191 m1 m2 m3))
192
193
194(defmethod r-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
195 "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
196 (declare (type monom m1 m2 m3 m4))
197 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
198 m1 m2 m3 m4))
199
200(defmethod r-lcm-equal-lcm-p (m1 m2 m3 m4)
201 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
202 (with-slots ((exponents1 exponents))
203 m1
204 (with-slots ((exponents2 exponents))
205 m2
206 (with-slots ((exponents3 exponents))
207 m3
208 (with-slots ((exponents4 exponents))
209 m4
210 (every
211 #'(lambda (x y z w) (= (max x y) (max z w)))
212 exponents1 exponents2 exponents3 exponents4))))))
213
214(defmethod r-divisible-by-p ((m1 monom) (m2 monom))
215 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
216 (with-slots ((exponents1 exponents))
217 m1
218 (with-slots ((exponents2 exponents))
219 m2
220 (every #'>= exponents1 exponents2))))
221
222(defmethod r-rel-prime-p ((m1 monom) (m2 monom))
223 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
224 (with-slots ((exponents1 exponents))
225 m1
226 (with-slots ((exponents2 exponents))
227 m2
228 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
229
230
231(defmethod r-lcm ((m1 monom) (m2 monom))
232 "Returns least common multiple of monomials M1 and M2."
233 (with-slots ((exponents1 exponents) (dimension1 dimension))
234 m1
235 (with-slots ((exponents2 exponents))
236 m2
237 (let* ((exponents (copy-seq exponents1))
238 (dimension dimension1))
239 (map-into exponents #'max exponents1 exponents2)
240 (make-instance 'monom :dimension dimension :exponents exponents)))))
241
242
243(defmethod r-gcd ((m1 monom) (m2 monom))
244 "Returns greatest common divisor of monomials M1 and M2."
245 (with-slots ((exponents1 exponents) (dimension1 dimension))
246 m1
247 (with-slots ((exponents2 exponents))
248 m2
249 (let* ((exponents (copy-seq exponents1))
250 (dimension dimension1))
251 (map-into exponents #'min exponents1 exponents2)
252 (make-instance 'monom :dimension dimension :exponents exponents)))))
253
254(defmethod r-depends-p ((m monom) k)
255 "Return T if the monomial M depends on variable number K."
256 (declare (type fixnum k))
257 (with-slots (exponents)
258 m
259 (plusp (elt exponents k))))
260
261(defmethod left-tensor-product-by ((self monom) (other monom))
262 (with-slots ((exponents1 exponents) (dimension1 dimension))
263 self
264 (with-slots ((exponents2 exponents) (dimension2 dimension))
265 other
266 (setf dimension1 (+ dimension1 dimension2)
267 exponents1 (concatenate 'vector exponents2 exponents1))))
268 self)
269
270(defmethod right-tensor-product-by ((self monom) (other monom))
271 (with-slots ((exponents1 exponents) (dimension1 dimension))
272 self
273 (with-slots ((exponents2 exponents) (dimension2 dimension))
274 other
275 (setf dimension1 (+ dimension1 dimension2)
276 exponents1 (concatenate 'vector exponents1 exponents2))))
277 self)
278
279(defmethod left-contract ((self monom) k)
280 "Drop the first K variables in monomial M."
281 (declare (fixnum k))
282 (with-slots (dimension exponents)
283 self
284 (setf dimension (- dimension k)
285 exponents (subseq exponents k)))
286 self)
287
288(defun make-monom-variable (nvars pos &optional (power 1)
289 &aux (m (make-instance 'monom :dimension nvars)))
290 "Construct a monomial in the polynomial ring
291RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
292which represents a single variable. It assumes number of variables
293NVARS and the variable is at position POS. Optionally, the variable
294may appear raised to power POWER. "
295 (declare (type fixnum nvars pos power) (type monom m))
296 (with-slots (exponents)
297 m
298 (setf (elt exponents pos) power)
299 m))
300
301(defmethod r->list ((m monom))
302 "A human-readable representation of a monomial M as a list of exponents."
303 (coerce (monom-exponents m) 'list))
304
305(defmethod r-dimension ((self monom))
306 (monom-dimension self))
307
308(defmethod r-exponents ((self monom))
309 (monom-exponents self))
Note: See TracBrowser for help on using the repository browser.