close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 3003

Last change on this file since 3003 was 3003, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 10.0 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "MONOM"
23 (:use :cl :ring)
24 (:export "MONOM"
25 "EXPONENT"
26 "MONOM-DIMENSION"
27 "MONOM-EXPONENTS"
28 "MAKE-MONOM-VARIABLE")
29 (:documentation
30 "This package implements basic operations on monomials.
31DATA STRUCTURES: Conceptually, monomials can be represented as lists:
32
33 monom: (n1 n2 ... nk) where ni are non-negative integers
34
35However, lists may be implemented as other sequence types, so the
36flexibility to change the representation should be maintained in the
37code to use general operations on sequences whenever possible. The
38optimization for the actual representation should be left to
39declarations and the compiler.
40
41EXAMPLES: Suppose that variables are x and y. Then
42
43 Monom x*y^2 ---> (1 2) "))
44
45(in-package :monom)
46
47(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
48
49(deftype exponent ()
50 "Type of exponent in a monomial."
51 'fixnum)
52
53(defclass monom ()
54 ((dimension :initarg :dimension :accessor monom-dimension)
55 (exponents :initarg :exponents :accessor monom-exponents))
56 (:default-initargs :dimension nil :exponents nil :exponent nil)
57 (:documentation
58 "Implements a monomial, i.e. a product of powers
59of variables, like X*Y^2."))
60
61(defmethod print-object ((self monom) stream)
62 (format stream "#<MONOM DIMENSION=~A EXPONENTS=~A>"
63 (monom-dimension self)
64 (monom-exponents self)))
65
66(defmethod shared-initialize :after ((self monom) slot-names
67 &key
68 dimension
69 exponents
70 exponent
71 &allow-other-keys
72 )
73 (if (eq slot-names t) (setf slot-names '(dimension exponents)))
74 (dolist (slot-name slot-names)
75 (case slot-name
76 (dimension
77 (cond (dimension
78 (setf (slot-value self 'dimension) dimension))
79 (exponents
80 (setf (slot-value self 'dimension) (length exponents)))
81 (t
82 (error "DIMENSION or EXPONENTS must not be NIL"))))
83 (exponents
84 (cond
85 ;; when exponents are supplied
86 (exponents
87 (let ((dim (length exponents)))
88 (when (and dimension (/= dimension dim))
89 (error "EXPONENTS must have length DIMENSION"))
90 (setf (slot-value self 'dimension) dim
91 (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
92 ;; when all exponents are to be identical
93 (t
94 (let ((dim (slot-value self 'dimension)))
95 (setf (slot-value self 'exponents)
96 (make-array (list dim) :initial-element (or exponent 0)
97 :element-type 'exponent)))))))))
98
99(defmethod r-equalp ((m1 monom) (m2 monom))
100 "Returns T iff monomials M1 and M2 have identical
101EXPONENTS."
102 (equalp (monom-exponents m1) (monom-exponents m2)))
103
104(defmethod r-coeff ((m monom))
105 "A MONOM can be treated as a special case of TERM,
106where the coefficient is 1."
107 1)
108
109(defmethod r-elt ((m monom) index)
110 "Return the power in the monomial M of variable number INDEX."
111 (with-slots (exponents)
112 m
113 (elt exponents index)))
114
115(defmethod (setf r-elt) (new-value (m monom) index)
116 "Return the power in the monomial M of variable number INDEX."
117 (with-slots (exponents)
118 m
119 (setf (elt exponents index) new-value)))
120
121(defmethod r-total-degree ((m monom) &optional (start 0) (end (monom-dimension m)))
122 "Return the todal degree of a monomoal M. Optinally, a range
123of variables may be specified with arguments START and END."
124 (declare (type fixnum start end))
125 (with-slots (exponents)
126 m
127 (reduce #'+ exponents :start start :end end)))
128
129
130(defmethod r-sugar ((m monom) &aux (start 0) (end (monom-dimension m)))
131 "Return the sugar of a monomial M. Optinally, a range
132of variables may be specified with arguments START and END."
133 (declare (type fixnum start end))
134 (r-total-degree m start end))
135
136(defmethod multiply-by ((self monom) (other monom))
137 (with-slots ((exponents1 exponents) (dimension1 dimension))
138 self
139 (with-slots ((exponents2 exponents) (dimension2 dimension))
140 other
141 (unless (= dimension1 dimension2)
142 (error "Incompatible dimensions: ~A and ~A.~%" dimension1 dimension2))
143 (map-into exponents1 #'+ exponents1 exponents2)))
144 self)
145
146(defmethod divide-by ((self monom) (other monom))
147 (with-slots ((exponents1 exponents) (dimension1 dimension))
148 self
149 (with-slots ((exponents2 exponents) (dimension2 dimension))
150 other
151 (unless (= dimension1 dimension2)
152 (error "Incompatible dimensions: ~A and ~A.~%" dimension1 dimension2))
153 (map-into exponents1 #'- exponents1 exponents2)))
154 self)
155
156(defmethod copy-instance :around ((object monom))
157 (declare (ignore object))
158 (let ((copy (call-next-method)))
159 (setf (monom-exponents copy) (copy-seq (monom-exponents copy)))
160 copy))
161
162(defmethod r* ((m1 monom) (m2 monom))
163 "Non-destructively multiply monomial M1 by M2."
164 (multiply-by (copy-monom m1) (copy-monom m2)))
165
166(defmethod r/ ((m1 monom) (m2 monom))
167 "Non-destructively divide monomial M1 by monomial M2."
168 (divide-by (copy-monom m1) (copy-monom m2)))
169
170(defmethod r-divides-p ((m1 monom) (m2 monom))
171 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
172 (with-slots ((exponents1 exponents))
173 m1
174 (with-slots ((exponents2 exponents))
175 m2
176 (every #'<= exponents1 exponents2))))
177
178
179(defmethod r-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
180 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
181 (every #'(lambda (x y z) (<= x (max y z)))
182 m1 m2 m3))
183
184
185(defmethod r-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
186 "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
187 (declare (type monom m1 m2 m3 m4))
188 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
189 m1 m2 m3 m4))
190
191(defmethod r-lcm-equal-lcm-p (m1 m2 m3 m4)
192 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
193 (with-slots ((exponents1 exponents))
194 m1
195 (with-slots ((exponents2 exponents))
196 m2
197 (with-slots ((exponents3 exponents))
198 m3
199 (with-slots ((exponents4 exponents))
200 m4
201 (every
202 #'(lambda (x y z w) (= (max x y) (max z w)))
203 exponents1 exponents2 exponents3 exponents4))))))
204
205(defmethod r-divisible-by-p ((m1 monom) (m2 monom))
206 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
207 (with-slots ((exponents1 exponents))
208 m1
209 (with-slots ((exponents2 exponents))
210 m2
211 (every #'>= exponents1 exponents2))))
212
213(defmethod r-rel-prime-p ((m1 monom) (m2 monom))
214 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
215 (with-slots ((exponents1 exponents))
216 m1
217 (with-slots ((exponents2 exponents))
218 m2
219 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
220
221
222(defmethod r-lcm ((m1 monom) (m2 monom))
223 "Returns least common multiple of monomials M1 and M2."
224 (with-slots ((exponents1 exponents) (dimension1 dimension))
225 m1
226 (with-slots ((exponents2 exponents))
227 m2
228 (let* ((exponents (copy-seq exponents1))
229 (dimension dimension1))
230 (map-into exponents #'max exponents1 exponents2)
231 (make-instance 'monom :dimension dimension :exponents exponents)))))
232
233
234(defmethod r-gcd ((m1 monom) (m2 monom))
235 "Returns greatest common divisor of monomials M1 and M2."
236 (with-slots ((exponents1 exponents) (dimension1 dimension))
237 m1
238 (with-slots ((exponents2 exponents))
239 m2
240 (let* ((exponents (copy-seq exponents1))
241 (dimension dimension1))
242 (map-into exponents #'min exponents1 exponents2)
243 (make-instance 'monom :dimension dimension :exponents exponents)))))
244
245(defmethod r-depends-p ((m monom) k)
246 "Return T if the monomial M depends on variable number K."
247 (declare (type fixnum k))
248 (with-slots (exponents)
249 m
250 (plusp (elt exponents k))))
251
252(defmethod r-tensor-product ((m1 monom) (m2 monom))
253 (with-slots ((exponents1 exponents) (dimension1 dimension))
254 m1
255 (with-slots ((exponents2 exponents) (dimension2 dimension))
256 m2
257 (make-instance 'monom
258 :dimension (+ dimension1 dimension2)
259 :exponents (concatenate 'vector exponents1 exponents2)))))
260
261(defmethod r-contract ((m monom) k)
262 "Drop the first K variables in monomial M."
263 (declare (fixnum k))
264 (with-slots (dimension exponents)
265 m
266 (setf dimension (- dimension k)
267 exponents (subseq exponents k))))
268
269(defun make-monom-variable (nvars pos &optional (power 1)
270 &aux (m (make-instance 'monom :dimension nvars)))
271 "Construct a monomial in the polynomial ring
272RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
273which represents a single variable. It assumes number of variables
274NVARS and the variable is at position POS. Optionally, the variable
275may appear raised to power POWER. "
276 (declare (type fixnum nvars pos power) (type monom m))
277 (with-slots (exponents)
278 m
279 (setf (elt exponents pos) power)
280 m))
281
282(defmethod r->list ((m monom))
283 "A human-readable representation of a monomial M as a list of exponents."
284 (coerce (monom-exponents m) 'list))
285
286(defmethod r-dimension ((self monom))
287 (monom-dimension self))
288
289(defmethod r-exponents ((self monom))
290 (monom-exponents self))
Note: See TracBrowser for help on using the repository browser.