close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 2848

Last change on this file since 2848 was 2848, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 10.0 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "MONOM"
23 (:use :cl :ring)
24 (:export "MONOM"
25 "EXPONENT"
26 "MONOM-DIMENSION"
27 "MONOM-EXPONENTS"
28 "MONOM-EQUALP"
29 "MAKE-MONOM-VARIABLE")
30 (:documentation
31 "This package implements basic operations on monomials.
32DATA STRUCTURES: Conceptually, monomials can be represented as lists:
33
34 monom: (n1 n2 ... nk) where ni are non-negative integers
35
36However, lists may be implemented as other sequence types, so the
37flexibility to change the representation should be maintained in the
38code to use general operations on sequences whenever possible. The
39optimization for the actual representation should be left to
40declarations and the compiler.
41
42EXAMPLES: Suppose that variables are x and y. Then
43
44 Monom x*y^2 ---> (1 2) "))
45
46(in-package :monom)
47
48(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
49
50(deftype exponent ()
51 "Type of exponent in a monomial."
52 'fixnum)
53
54(defclass monom ()
55 ((dimension :initarg :dimension :accessor monom-dimension)
56 (exponents :initarg :exponents :accessor monom-exponents))
57 (:default-initargs :dimension nil :exponents nil :exponent nil)
58 (:documentation
59 "Implements a monomial, i.e. a product of powers
60of variables, like X*Y^2."))
61
62(defmethod print-object ((self monom) stream)
63 (format stream "#<MONOM DIMENSION=~A EXPONENTS=~A>"
64 (monom-dimension self)
65 (monom-exponents self)))
66
67(defmethod shared-initialize :after ((self monom) slot-names
68 &key
69 dimension
70 exponents
71 exponent
72 &allow-other-keys
73 )
74 (if (eq slot-names t) (setf slot-names '(dimension exponents)))
75 (dolist (slot-name slot-names)
76 (case slot-name
77 (dimension
78 (cond (dimension
79 (setf (slot-value self 'dimension) dimension))
80 (exponents
81 (setf (slot-value self 'dimension) (length exponents)))
82 (t
83 (error "DIMENSION or EXPONENTS must not be NIL"))))
84 (exponents
85 (cond
86 ;; when exponents are supplied
87 (exponents
88 (let ((dim (length exponents)))
89 (when (and dimension (/= dimension dim))
90 (error "EXPONENTS must have length DIMENSION"))
91 (setf (slot-value self 'dimension) dim
92 (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
93 ;; when all exponents are to be identical
94 (t
95 (let ((dim (slot-value self 'dimension)))
96 (setf (slot-value self 'exponents)
97 (make-array (list dim) :initial-element (or exponent 0)
98 :element-type 'exponent)))))))))
99
100(defun r-clone ((m monom))
101 (make-instance 'monom
102 :dimension (monom-dimension m)
103 :exponents (copy-seq (monom-exponents m))))
104
105(defun monom-equalp (m1 m2)
106 "Returns T iff monomials M1 and M2 have identical
107EXPONENTS."
108 (declare (type monom m1 m2))
109 (equalp (monom-exponents m1) (monom-exponents m2)))
110
111(defmethod r-coeff ((m monom))
112 "A MONOM can be treated as a special case of TERM,
113where the coefficient is 1."
114 1)
115
116(defmethod r-elt ((m monom) index)
117 "Return the power in the monomial M of variable number INDEX."
118 (with-slots (exponents)
119 m
120 (elt exponents index)))
121
122(defmethod (setf r-elt) (new-value (m monom) index)
123 "Return the power in the monomial M of variable number INDEX."
124 (with-slots (exponents)
125 m
126 (setf (elt exponents index) new-value)))
127
128(defmethod r-total-degree ((m monom) &optional (start 0) (end (monom-dimension m)))
129 "Return the todal degree of a monomoal M. Optinally, a range
130of variables may be specified with arguments START and END."
131 (declare (type fixnum start end))
132 (with-slots (exponents)
133 m
134 (reduce #'+ exponents :start start :end end)))
135
136
137(defmethod r-sugar ((m monom) &aux (start 0) (end (monom-dimension m)))
138 "Return the sugar of a monomial M. Optinally, a range
139of variables may be specified with arguments START and END."
140 (declare (type fixnum start end))
141 (r-total-degree m start end))
142
143(defmethod multiply-by ((self monom) (other monom))
144 (with-slots ((exponents1 exponents) (dimension1 dimension))
145 self
146 (with-slots ((exponents2 exponents) (dimension2 dimension))
147 other
148 (unless (= dimension1 dimension2)
149 (error "Incompatible dimensions: ~A and ~A.~%" dimension1 dimension2))
150 (map-into exponents1 #'+ exponents1 exponents2)))
151 self)
152
153(defmethod divide-by ((self monom) (other monom))
154 (with-slots ((exponents1 exponents) (dimension1 dimension))
155 self
156 (with-slots ((exponents2 exponents) (dimension2 dimension))
157 other
158 (unless (= dimension1 dimension2)
159 (error "Incompatible dimensions: ~A and ~A.~%" dimension1 dimension2))
160 (map-into exponents1 #'- exponents1 exponents2)))
161 self)
162
163(defmethod r* ((m1 monom) (m2 monom))
164 "Non-destructively multiply monomial M1 by M2."
165 (multiply-by (monom-clone m1) (monom-clone m2)))
166
167(defmethod r/ ((m1 monom) (m2 monom))
168 "Non-destructively divide monomial M1 by monomial M2."
169 (divide-by (monom-clone m1) (monom-clone m2)))
170
171(defmethod r-divides-p ((m1 monom) (m2 monom))
172 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
173 (with-slots ((exponents1 exponents))
174 m1
175 (with-slots ((exponents2 exponents))
176 m2
177 (every #'<= exponents1 exponents2))))
178
179
180(defmethod r-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
181 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
182 (every #'(lambda (x y z) (<= x (max y z)))
183 m1 m2 m3))
184
185
186(defmethod r-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
187 "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
188 (declare (type monom m1 m2 m3 m4))
189 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
190 m1 m2 m3 m4))
191
192(defmethod r-lcm-equal-lcm-p (m1 m2 m3 m4)
193 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
194 (with-slots ((exponents1 exponents))
195 m1
196 (with-slots ((exponents2 exponents))
197 m2
198 (with-slots ((exponents3 exponents))
199 m3
200 (with-slots ((exponents4 exponents))
201 m4
202 (every
203 #'(lambda (x y z w) (= (max x y) (max z w)))
204 exponents1 exponents2 exponents3 exponents4))))))
205
206(defmethod r-divisible-by-p ((m1 monom) (m2 monom))
207 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
208 (with-slots ((exponents1 exponents))
209 m1
210 (with-slots ((exponents2 exponents))
211 m2
212 (every #'>= exponents1 exponents2))))
213
214(defmethod r-rel-prime-p ((m1 monom) (m2 monom))
215 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
216 (with-slots ((exponents1 exponents))
217 m1
218 (with-slots ((exponents2 exponents))
219 m2
220 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
221
222
223(defmethod r-equalp ((m1 monom) (m2 monom))
224 (monom-equalp m1 m2))
225
226(defmethod r-lcm ((m1 monom) (m2 monom))
227 "Returns least common multiple of monomials M1 and M2."
228 (with-slots ((exponents1 exponents) (dimension1 dimension))
229 m1
230 (with-slots ((exponents2 exponents))
231 m2
232 (let* ((exponents (copy-seq exponents1))
233 (dimension dimension1))
234 (map-into exponents #'max exponents1 exponents2)
235 (make-instance 'monom :dimension dimension :exponents exponents)))))
236
237
238(defmethod r-gcd ((m1 monom) (m2 monom))
239 "Returns greatest common divisor of monomials M1 and M2."
240 (with-slots ((exponents1 exponents) (dimension1 dimension))
241 m1
242 (with-slots ((exponents2 exponents))
243 m2
244 (let* ((exponents (copy-seq exponents1))
245 (dimension dimension1))
246 (map-into exponents #'min exponents1 exponents2)
247 (make-instance 'monom :dimension dimension :exponents exponents)))))
248
249(defmethod r-depends-p ((m monom) k)
250 "Return T if the monomial M depends on variable number K."
251 (declare (type fixnum k))
252 (with-slots (exponents)
253 m
254 (plusp (elt exponents k))))
255
256(defmethod r-tensor-product ((m1 monom) (m2 monom))
257 (with-slots ((exponents1 exponents) (dimension1 dimension))
258 m1
259 (with-slots ((exponents2 exponents) (dimension2 dimension))
260 m2
261 (make-instance 'monom
262 :dimension (+ dimension1 dimension2)
263 :exponents (concatenate 'vector exponents1 exponents2)))))
264
265(defmethod r-contract ((m monom) k)
266 "Drop the first K variables in monomial M."
267 (declare (fixnum k))
268 (with-slots (dimension exponents)
269 m
270 (setf dimension (- dimension k)
271 exponents (subseq exponents k))))
272
273(defun make-monom-variable (nvars pos &optional (power 1)
274 &aux (m (make-instance 'monom :dimension nvars)))
275 "Construct a monomial in the polynomial ring
276RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
277which represents a single variable. It assumes number of variables
278NVARS and the variable is at position POS. Optionally, the variable
279may appear raised to power POWER. "
280 (declare (type fixnum nvars pos power) (type monom m))
281 (with-slots (exponents)
282 m
283 (setf (elt exponents pos) power)
284 m))
285
286(defmethod r->list ((m monom))
287 "A human-readable representation of a monomial M as a list of exponents."
288 (coerce (monom-exponents m) 'list))
289
290(defmethod r-dimension ((self monom))
291 (monom-dimension self))
292
293(defmethod r-exponents ((self monom))
294 (monom-exponents self))
Note: See TracBrowser for help on using the repository browser.