close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 2780

Last change on this file since 2780 was 2780, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 9.8 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "MONOM"
23 (:use :cl :ring)
24 (:export "MONOM"
25 "EXPONENT"
26 "MONOM-EQUALP"
27 "MAKE-MONOM-VARIABLE")
28 (:documentation
29 "This package implements basic operations on monomials.
30DATA STRUCTURES: Conceptually, monomials can be represented as lists:
31
32 monom: (n1 n2 ... nk) where ni are non-negative integers
33
34However, lists may be implemented as other sequence types, so the
35flexibility to change the representation should be maintained in the
36code to use general operations on sequences whenever possible. The
37optimization for the actual representation should be left to
38declarations and the compiler.
39
40EXAMPLES: Suppose that variables are x and y. Then
41
42 Monom x*y^2 ---> (1 2) "))
43
44(in-package :monom)
45
46(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
47
48(deftype exponent ()
49 "Type of exponent in a monomial."
50 'fixnum)
51
52(defclass monom ()
53 ((dimension :initarg :dimension :accessor monom-dimension)
54 (exponents :initarg :exponents :accessor monom-exponents))
55 (:default-initargs :dimension nil :exponents nil :exponent nil)
56 (:documentation
57 "Implements a monomial, i.e. a product of powers
58of variables, like X*Y^2."))
59
60(defmethod print-object ((self monom) stream)
61 (format stream "#<MONOM DIMENSION=~A EXPONENTS=~A>"
62 (monom-dimension self)
63 (monom-exponents self)))
64
65(defmethod shared-initialize :after ((self monom) slot-names
66 &key
67 dimension
68 exponents
69 exponent
70 &allow-other-keys
71 )
72 (if (eq slot-names t) (setf slot-names '(dimension exponents)))
73 (dolist (slot-name slot-names)
74 (case slot-name
75 (dimension
76 (cond (dimension
77 (setf (slot-value self 'dimension) dimension))
78 (exponents
79 (setf (slot-value self 'dimension) (length exponents)))
80 (t
81 (error "DIMENSION or EXPONENTS must not be NIL"))))
82 (exponents
83 (cond
84 ;; when exponents are supplied
85 (exponents
86 (let ((dim (length exponents)))
87 (when (and dimension (/= dimension dim))
88 (error "EXPONENTS must have length DIMENSION"))
89 (setf (slot-value self 'dimension) dim
90 (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
91 ;; when all exponents are to be identical
92 (t
93 (let ((dim (slot-value self 'dimension)))
94 (setf (slot-value self 'exponents)
95 (make-array (list dim) :initial-element (or exponent 0)
96 :element-type 'exponent)))))))))
97
98(defun monom-equalp (m1 m2)
99 "Returns T iff monomials M1 and M2 have identical
100EXPONENTS."
101 (declare (type monom m1 m2))
102 (equalp (monom-exponents m1) (monom-exponents m2)))
103
104(defmethod r-coeff ((m monom))
105 "A MONOM can be treated as a special case of TERM,
106where the coefficient is 1."
107 1)
108
109(defmethod r-elt ((m monom) index)
110 "Return the power in the monomial M of variable number INDEX."
111 (with-slots (exponents)
112 m
113 (elt exponents index)))
114
115(defmethod (setf r-elt) (new-value (m monom) index)
116 "Return the power in the monomial M of variable number INDEX."
117 (with-slots (exponents)
118 m
119 (setf (elt exponents index) new-value)))
120
121(defmethod r-total-degree ((m monom) &optional (start 0) (end (monom-dimension m)))
122 "Return the todal degree of a monomoal M. Optinally, a range
123of variables may be specified with arguments START and END."
124 (declare (type fixnum start end))
125 (with-slots (exponents)
126 m
127 (reduce #'+ exponents :start start :end end)))
128
129
130(defmethod r-sugar ((m monom) &aux (start 0) (end (monom-dimension m)))
131 "Return the sugar of a monomial M. Optinally, a range
132of variables may be specified with arguments START and END."
133 (declare (type fixnum start end))
134 (r-total-degree m start end))
135
136(defmethod r* ((m1 monom) (m2 monom))
137 "Multiply monomial M1 by monomial M2."
138 (with-slots ((exponents1 exponents) dimension)
139 m1
140 (with-slots ((exponents2 exponents))
141 m2
142 (let* ((exponents (copy-seq exponents1)))
143 (map-into exponents #'+ exponents1 exponents2)
144 (make-instance 'monom :dimension dimension :exponents exponents)))))
145
146(defmethod multiply-by ((self monom) (other monom))
147 (with-slots ((exponents1 exponents))
148 self
149 (with-slots ((exponents2 exponents))
150 other
151 (map-into exponents1 #'+ exponents1 exponents2)))
152 self)
153
154(defmethod r/ ((m1 monom) (m2 monom))
155 "Divide monomial M1 by monomial M2."
156 (with-slots ((exponents1 exponents) (dimension1 dimension))
157 m1
158 (with-slots ((exponents2 exponents))
159 m2
160 (let* ((exponents (copy-seq exponents1))
161 (dimension dimension1))
162 (map-into exponents #'- exponents1 exponents2)
163 (make-instance 'monom :dimension dimension :exponents exponents)))))
164
165(defmethod r-divides-p ((m1 monom) (m2 monom))
166 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
167 (with-slots ((exponents1 exponents))
168 m1
169 (with-slots ((exponents2 exponents))
170 m2
171 (every #'<= exponents1 exponents2))))
172
173
174(defmethod r-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
175 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
176 (every #'(lambda (x y z) (<= x (max y z)))
177 m1 m2 m3))
178
179
180(defmethod r-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
181 "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
182 (declare (type monom m1 m2 m3 m4))
183 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
184 m1 m2 m3 m4))
185
186(defmethod r-lcm-equal-lcm-p (m1 m2 m3 m4)
187 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
188 (with-slots ((exponents1 exponents))
189 m1
190 (with-slots ((exponents2 exponents))
191 m2
192 (with-slots ((exponents3 exponents))
193 m3
194 (with-slots ((exponents4 exponents))
195 m4
196 (every
197 #'(lambda (x y z w) (= (max x y) (max z w)))
198 exponents1 exponents2 exponents3 exponents4))))))
199
200(defmethod r-divisible-by-p ((m1 monom) (m2 monom))
201 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
202 (with-slots ((exponents1 exponents))
203 m1
204 (with-slots ((exponents2 exponents))
205 m2
206 (every #'>= exponents1 exponents2))))
207
208(defmethod r-rel-prime-p ((m1 monom) (m2 monom))
209 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
210 (with-slots ((exponents1 exponents))
211 m1
212 (with-slots ((exponents2 exponents))
213 m2
214 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
215
216
217(defmethod r-equalp ((m1 monom) (m2 monom))
218 "Returns T if two monomials M1 and M2 are equal."
219 (monom-equalp m1 m2))
220
221(defmethod r-lcm ((m1 monom) (m2 monom))
222 "Returns least common multiple of monomials M1 and M2."
223 (with-slots ((exponents1 exponents) (dimension1 dimension))
224 m1
225 (with-slots ((exponents2 exponents))
226 m2
227 (let* ((exponents (copy-seq exponents1))
228 (dimension dimension1))
229 (map-into exponents #'max exponents1 exponents2)
230 (make-instance 'monom :dimension dimension :exponents exponents)))))
231
232
233(defmethod r-gcd ((m1 monom) (m2 monom))
234 "Returns greatest common divisor of monomials M1 and M2."
235 (with-slots ((exponents1 exponents) (dimension1 dimension))
236 m1
237 (with-slots ((exponents2 exponents))
238 m2
239 (let* ((exponents (copy-seq exponents1))
240 (dimension dimension1))
241 (map-into exponents #'min exponents1 exponents2)
242 (make-instance 'monom :dimension dimension :exponents exponents)))))
243
244(defmethod r-depends-p ((m monom) k)
245 "Return T if the monomial M depends on variable number K."
246 (declare (type fixnum k))
247 (with-slots (exponents)
248 m
249 (plusp (elt exponents k))))
250
251(defmethod r-tensor-product ((m1 monom) (m2 monom))
252 (with-slots ((exponents1 exponents) (dimension1 dimension))
253 m1
254 (with-slots ((exponents2 exponents) (dimension2 dimension))
255 m2
256 (make-instance 'monom
257 :dimension (+ dimension1 dimension2)
258 :exponents (concatenate 'vector exponents1 exponents2)))))
259
260(defmethod r-contract ((m monom) k)
261 "Drop the first K variables in monomial M."
262 (declare (fixnum k))
263 (with-slots (dimension exponents)
264 m
265 (setf dimension (- dimension k)
266 exponents (subseq exponents k))))
267
268(defun make-monom-variable (nvars pos &optional (power 1)
269 &aux (m (make-instance 'monom :dimension nvars)))
270 "Construct a monomial in the polynomial ring
271RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
272which represents a single variable. It assumes number of variables
273NVARS and the variable is at position POS. Optionally, the variable
274may appear raised to power POWER. "
275 (declare (type fixnum nvars pos power) (type monom m))
276 (with-slots (exponents)
277 m
278 (setf (elt exponents pos) power)
279 m))
280
281(defmethod r->list ((m monom))
282 "A human-readable representation of a monomial M as a list of exponents."
283 (coerce (monom-exponents m) 'list))
284
285(defmethod r-coeff ((self monom))
286 (monom-coeff self))
287
288(defmethod r-exponents ((self monom))
289 (monom-exponents self))
Note: See TracBrowser for help on using the repository browser.