close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 2403

Last change on this file since 2403 was 2398, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 9.6 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22;;----------------------------------------------------------------
23;; This package implements BASIC OPERATIONS ON MONOMIALS
24;;----------------------------------------------------------------
25;; DATA STRUCTURES: Conceptually, monomials can be represented as lists:
26;;
27;; monom: (n1 n2 ... nk) where ni are non-negative integers
28;;
29;; However, lists may be implemented as other sequence types,
30;; so the flexibility to change the representation should be
31;; maintained in the code to use general operations on sequences
32;; whenever possible. The optimization for the actual representation
33;; should be left to declarations and the compiler.
34;;----------------------------------------------------------------
35;; EXAMPLES: Suppose that variables are x and y. Then
36;;
37;; Monom x*y^2 ---> (1 2)
38;;
39;;----------------------------------------------------------------
40
41(defpackage "MONOM"
42 (:use :cl :ring)
43 (:export "MONOM"
44 "EXPONENT"
45 "MAKE-MONOM-VARIABLE"))
46
47(in-package :monom)
48
49(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
50
51(deftype exponent ()
52 "Type of exponent in a monomial."
53 'fixnum)
54
55(defclass monom ()
56 ((dimension :initarg :dimension :accessor r-dimension)
57 (exponents :initarg :exponents :accessor r-exponents))
58 (:default-initargs :dimension nil :exponents nil :exponent nil))
59
60(defmethod print-object ((self monom) stream)
61 (format stream "#<MONOM DIMENSION=~A EXPONENTS=~A>"
62 (r-dimension self)
63 (r-exponents self)))
64
65(defmethod shared-initialize :after ((self monom) slot-names
66 &key
67 dimension
68 exponents
69 exponent
70 &allow-other-keys
71 )
72 (if (eq slot-names t) (setf slot-names '(dimension exponents)))
73 (dolist (slot-name slot-names)
74 (case slot-name
75 (dimension
76 (cond (dimension
77 (setf (slot-value self 'dimension) dimension))
78 (exponents
79 (setf (slot-value self 'dimension) (length exponents)))
80 (t
81 (error "DIMENSION or EXPONENTS must not be NIL"))))
82 (exponents
83 (cond
84 ;; when exponents are supplied
85 (exponents
86 (let ((dim (length exponents)))
87 (setf (slot-value self 'dimension) dim
88 (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
89 ;; when all exponents are to be identical
90 (t
91 (let ((dim (slot-value self 'dimension)))
92 (setf (slot-value self 'exponents)
93 (make-array (list dim) :initial-element (or exponent 0)
94 :element-type 'exponent)))))))))
95
96;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
97;;
98;; Operations on monomials
99;;
100;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
101
102(defmethod r-coeff ((m monom))
103 "A MONOM can be treated as a special case of TERM,
104where the coefficient is 1."
105 1)
106
107(defmethod r-elt ((m monom) index)
108 "Return the power in the monomial M of variable number INDEX."
109 (with-slots (exponents)
110 m
111 (elt exponents index)))
112
113(defmethod (setf r-elt) (new-value (m monom) index)
114 "Return the power in the monomial M of variable number INDEX."
115 (with-slots (exponents)
116 m
117 (setf (elt exponents index) new-value)))
118
119(defmethod r-total-degree ((m monom) &optional (start 0) (end (r-dimension m)))
120 "Return the todal degree of a monomoal M. Optinally, a range
121of variables may be specified with arguments START and END."
122 (declare (type fixnum start end))
123 (with-slots (exponents)
124 m
125 (reduce #'+ exponents :start start :end end)))
126
127
128(defmethod r-sugar ((m monom) &aux (start 0) (end (r-dimension m)))
129 "Return the sugar of a monomial M. Optinally, a range
130of variables may be specified with arguments START and END."
131 (declare (type fixnum start end))
132 (r-total-degree m start end))
133
134(defmethod r* ((m1 monom) (m2 monom))
135 "Multiply monomial M1 by monomial M2."
136 (with-slots ((exponents1 exponents) dimension)
137 m1
138 (with-slots ((exponents2 exponents))
139 m2
140 (let* ((exponents (copy-seq exponents1)))
141 (map-into exponents #'+ exponents1 exponents2)
142 (make-instance 'monom :dimension dimension :exponents exponents)))))
143
144
145
146(defmethod r/ ((m1 monom) (m2 monom))
147 "Divide monomial M1 by monomial M2."
148 (with-slots ((exponents1 exponents) (dimension1 dimension))
149 m1
150 (with-slots ((exponents2 exponents))
151 m2
152 (let* ((exponents (copy-seq exponents1))
153 (dimension dimension1))
154 (map-into exponents #'- exponents1 exponents2)
155 (make-instance 'monom :dimension dimension :exponents exponents)))))
156
157(defmethod r-divides-p ((m1 monom) (m2 monom))
158 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
159 (with-slots ((exponents1 exponents))
160 m1
161 (with-slots ((exponents2 exponents))
162 m2
163 (every #'<= exponents1 exponents2))))
164
165
166(defmethod r-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
167 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
168 (every #'(lambda (x y z) (<= x (max y z)))
169 m1 m2 m3))
170
171
172(defmethod r-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
173 "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
174 (declare (type monom m1 m2 m3 m4))
175 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
176 m1 m2 m3 m4))
177
178(defmethod r-lcm-equal-lcm-p (m1 m2 m3 m4)
179 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
180 (with-slots ((exponents1 exponents))
181 m1
182 (with-slots ((exponents2 exponents))
183 m2
184 (with-slots ((exponents3 exponents))
185 m3
186 (with-slots ((exponents4 exponents))
187 m4
188 (every
189 #'(lambda (x y z w) (= (max x y) (max z w)))
190 exponents1 exponents2 exponents3 exponents4))))))
191
192(defmethod r-divisible-by-p ((m1 monom) (m2 monom))
193 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
194 (with-slots ((exponents1 exponents))
195 m1
196 (with-slots ((exponents2 exponents))
197 m2
198 (every #'>= exponents1 exponents2))))
199
200(defmethod r-rel-prime-p ((m1 monom) (m2 monom))
201 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
202 (with-slots ((exponents1 exponents))
203 m1
204 (with-slots ((exponents2 exponents))
205 m2
206 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
207
208
209(defmethod r-equalp ((m1 monom) (m2 monom))
210 "Returns T if two monomials M1 and M2 are equal."
211 (with-slots ((exponents1 exponents))
212 m1
213 (with-slots ((exponents2 exponents))
214 m2
215 (every #'= exponents1 exponents2))))
216
217(defmethod r-lcm ((m1 monom) (m2 monom))
218 "Returns least common multiple of monomials M1 and M2."
219 (with-slots ((exponents1 exponents) (dimension1 dimension))
220 m1
221 (with-slots ((exponents2 exponents))
222 m2
223 (let* ((exponents (copy-seq exponents1))
224 (dimension dimension1))
225 (map-into exponents #'max exponents1 exponents2)
226 (make-instance 'monom :dimension dimension :exponents exponents)))))
227
228
229(defmethod r-gcd ((m1 monom) (m2 monom))
230 "Returns greatest common divisor of monomials M1 and M2."
231 (with-slots ((exponents1 exponents) (dimension1 dimension))
232 m1
233 (with-slots ((exponents2 exponents))
234 m2
235 (let* ((exponents (copy-seq exponents1))
236 (dimension dimension1))
237 (map-into exponents #'min exponents1 exponents2)
238 (make-instance 'monom :dimension dimension :exponents exponents)))))
239
240(defmethod r-depends-p ((m monom) k)
241 "Return T if the monomial M depends on variable number K."
242 (declare (type fixnum k))
243 (with-slots (exponents)
244 m
245 (plusp (elt exponents k))))
246
247(defmethod r-tensor-product ((m1 monom) (m2 monom))
248 (with-slots ((exponents1 exponents) (dimension1 dimension))
249 m1
250 (with-slots ((exponents2 exponents) (dimension2 dimension))
251 m2
252 (make-instance 'monom
253 :dimension (+ dimension1 dimension2)
254 :exponents (concatenate 'vector exponents1 exponents2)))))
255
256(defmethod r-contract ((m monom) k)
257 "Drop the first K variables in monomial M."
258 (declare (fixnum k))
259 (with-slots (dimension exponents)
260 m
261 (setf dimension (- dimension k)
262 exponents (subseq exponents k))))
263
264(defun make-monom-variable (nvars pos &optional (power 1)
265 &aux (m (make-instance 'monom :dimension nvars)))
266 "Construct a monomial in the polynomial ring
267RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
268which represents a single variable. It assumes number of variables
269NVARS and the variable is at position POS. Optionally, the variable
270may appear raised to power POWER. "
271 (declare (type fixnum nvars pos power) (type monom m))
272 (with-slots (exponents)
273 m
274 (setf (elt exponents pos) power)
275 m))
276
277(defmethod r->list ((m monom))
278 "A human-readable representation of a monomial M as a list of exponents."
279 (coerce (r-exponents m) 'list))
Note: See TracBrowser for help on using the repository browser.