close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 2394

Last change on this file since 2394 was 2390, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 9.5 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22;;----------------------------------------------------------------
23;; This package implements BASIC OPERATIONS ON MONOMIALS
24;;----------------------------------------------------------------
25;; DATA STRUCTURES: Conceptually, monomials can be represented as lists:
26;;
27;; monom: (n1 n2 ... nk) where ni are non-negative integers
28;;
29;; However, lists may be implemented as other sequence types,
30;; so the flexibility to change the representation should be
31;; maintained in the code to use general operations on sequences
32;; whenever possible. The optimization for the actual representation
33;; should be left to declarations and the compiler.
34;;----------------------------------------------------------------
35;; EXAMPLES: Suppose that variables are x and y. Then
36;;
37;; Monom x*y^2 ---> (1 2)
38;;
39;;----------------------------------------------------------------
40
41(defpackage "MONOM"
42 (:use :cl :ring)
43 (:export "MONOM"
44 "EXPONENT"
45 "MAKE-MONOM-VARIABLE"))
46
47(in-package :monom)
48
49(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
50
51(deftype exponent ()
52 "Type of exponent in a monomial."
53 'fixnum)
54
55(defclass monom ()
56 ((dimension :initarg :dimension :accessor r-dimension)
57 (exponents :initarg :exponents :accessor r-exponents))
58 (:default-initargs :dimension nil :exponents nil :exponent nil))
59
60(defmethod print-object ((self monom) stream)
61 (format stream "#<MONOM DIMENSION=~A EXPONENTS=~A>"
62 (r-dimension self)
63 (r-exponents self)))
64
65(defmethod shared-initialize :after ((self monom) slot-names
66 &key
67 dimension
68 exponents
69 exponent
70 &allow-other-keys
71 )
72 (if (eq slot-names t) (setf slot-names '(dimension exponents)))
73 (dolist (slot-name slot-names)
74 (case slot-name
75 (dimension
76 (cond (dimension
77 (setf (slot-value self 'dimension) dimension))
78 (exponents
79 (setf (slot-value self 'dimension) (length exponents)))
80 (t
81 (error "DIMENSION or EXPONENTS must not be NIL"))))
82 (exponents
83 (cond
84 ;; when exponents are supplied
85 (exponents
86 (let ((dim (length exponents)))
87 (setf (slot-value self 'dimension) dim
88 (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
89 ;; when all exponents are to be identical
90 (t
91 (let ((dim (slot-value self 'dimension)))
92 (setf (slot-value self 'exponents)
93 (make-array (list dim) :initial-element (or exponent 0)
94 :element-type 'exponent)))))))))
95
96;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
97;;
98;; Operations on monomials
99;;
100;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
101
102(defmethod r-elt ((m monom) index)
103 "Return the power in the monomial M of variable number INDEX."
104 (with-slots (exponents)
105 m
106 (elt exponents index)))
107
108(defmethod (setf r-elt) (new-value (m monom) index)
109 "Return the power in the monomial M of variable number INDEX."
110 (with-slots (exponents)
111 m
112 (setf (elt exponents index) new-value)))
113
114(defmethod r-total-degree ((m monom) &optional (start 0) (end (r-dimension m)))
115 "Return the todal degree of a monomoal M. Optinally, a range
116of variables may be specified with arguments START and END."
117 (declare (type fixnum start end))
118 (with-slots (exponents)
119 m
120 (reduce #'+ exponents :start start :end end)))
121
122
123(defmethod r-sugar ((m monom) &aux (start 0) (end (r-dimension m)))
124 "Return the sugar of a monomial M. Optinally, a range
125of variables may be specified with arguments START and END."
126 (declare (type fixnum start end))
127 (r-total-degree m start end))
128
129(defmethod r* ((m1 monom) (m2 monom))
130 "Multiply monomial M1 by monomial M2."
131 (with-slots ((exponents1 exponents) dimension)
132 m1
133 (with-slots ((exponents2 exponents))
134 m2
135 (let* ((exponents (copy-seq exponents1)))
136 (map-into exponents #'+ exponents1 exponents2)
137 (make-instance 'monom :dimension dimension :exponents exponents)))))
138
139
140
141(defmethod r/ ((m1 monom) (m2 monom))
142 "Divide monomial M1 by monomial M2."
143 (with-slots ((exponents1 exponents) (dimension1 dimension))
144 m1
145 (with-slots ((exponents2 exponents))
146 m2
147 (let* ((exponents (copy-seq exponents1))
148 (dimension dimension1))
149 (map-into exponents #'- exponents1 exponents2)
150 (make-instance 'monom :dimension dimension :exponents exponents)))))
151
152(defmethod r-divides-p ((m1 monom) (m2 monom))
153 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
154 (with-slots ((exponents1 exponents))
155 m1
156 (with-slots ((exponents2 exponents))
157 m2
158 (every #'<= exponents1 exponents2))))
159
160
161(defmethod r-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
162 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
163 (every #'(lambda (x y z) (<= x (max y z)))
164 m1 m2 m3))
165
166
167(defmethod r-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
168 "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
169 (declare (type monom m1 m2 m3 m4))
170 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
171 m1 m2 m3 m4))
172
173(defmethod r-lcm-equal-lcm-p (m1 m2 m3 m4)
174 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
175 (with-slots ((exponents1 exponents))
176 m1
177 (with-slots ((exponents2 exponents))
178 m2
179 (with-slots ((exponents3 exponents))
180 m3
181 (with-slots ((exponents4 exponents))
182 m4
183 (every
184 #'(lambda (x y z w) (= (max x y) (max z w)))
185 exponents1 exponents2 exponents3 exponents4))))))
186
187(defmethod r-divisible-by-p ((m1 monom) (m2 monom))
188 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
189 (with-slots ((exponents1 exponents))
190 m1
191 (with-slots ((exponents2 exponents))
192 m2
193 (every #'>= exponents1 exponents2))))
194
195(defmethod r-rel-prime-p ((m1 monom) (m2 monom))
196 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
197 (with-slots ((exponents1 exponents))
198 m1
199 (with-slots ((exponents2 exponents))
200 m2
201 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
202
203
204(defmethod r-equalp ((m1 monom) (m2 monom))
205 "Returns T if two monomials M1 and M2 are equal."
206 (with-slots ((exponents1 exponents))
207 m1
208 (with-slots ((exponents2 exponents))
209 m2
210 (every #'= exponents1 exponents2))))
211
212(defmethod r-lcm ((m1 monom) (m2 monom))
213 "Returns least common multiple of monomials M1 and M2."
214 (with-slots ((exponents1 exponents) (dimension1 dimension))
215 m1
216 (with-slots ((exponents2 exponents))
217 m2
218 (let* ((exponents (copy-seq exponents1))
219 (dimension dimension1))
220 (map-into exponents #'max exponents1 exponents2)
221 (make-instance 'monom :dimension dimension :exponents exponents)))))
222
223
224(defmethod r-gcd ((m1 monom) (m2 monom))
225 "Returns greatest common divisor of monomials M1 and M2."
226 (with-slots ((exponents1 exponents) (dimension1 dimension))
227 m1
228 (with-slots ((exponents2 exponents))
229 m2
230 (let* ((exponents (copy-seq exponents1))
231 (dimension dimension1))
232 (map-into exponents #'min exponents1 exponents2)
233 (make-instance 'monom :dimension dimension :exponents exponents)))))
234
235(defmethod r-depends-p ((m monom) k)
236 "Return T if the monomial M depends on variable number K."
237 (declare (type fixnum k))
238 (with-slots (exponents)
239 m
240 (plusp (elt exponents k))))
241
242(defmethod r-tensor-product ((m1 monom) (m2 monom))
243 (with-slots ((exponents1 exponents) (dimension1 dimension))
244 m1
245 (with-slots ((exponents2 exponents) (dimension2 dimension))
246 m2
247 (make-instance 'monom
248 :dimension (+ dimension1 dimension2)
249 :exponents (concatenate 'vector exponents1 exponents2)))))
250
251(defmethod r-contract ((m monom) k)
252 "Drop the first K variables in monomial M."
253 (declare (fixnum k))
254 (with-slots (dimension exponents)
255 m
256 (setf dimension (- dimension k)
257 exponents (subseq exponents k))))
258
259(defun make-monom-variable (nvars pos &optional (power 1)
260 &aux (m (make-instance 'monom :dimension nvars)))
261 "Construct a monomial in the polynomial ring
262RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
263which represents a single variable. It assumes number of variables
264NVARS and the variable is at position POS. Optionally, the variable
265may appear raised to power POWER. "
266 (declare (type fixnum nvars pos power) (type monom m))
267 (with-slots (exponents)
268 m
269 (setf (elt exponents pos) power)
270 m))
271
272(defmethod r->list ((m monom))
273 "A human-readable representation of a monomial M as a list of exponents."
274 (coerce (r-exponents m) 'list))
Note: See TracBrowser for help on using the repository browser.