close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 2383

Last change on this file since 2383 was 2383, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 9.8 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22;;----------------------------------------------------------------
23;; This package implements BASIC OPERATIONS ON MONOMIALS
24;;----------------------------------------------------------------
25;; DATA STRUCTURES: Conceptually, monomials can be represented as lists:
26;;
27;; monom: (n1 n2 ... nk) where ni are non-negative integers
28;;
29;; However, lists may be implemented as other sequence types,
30;; so the flexibility to change the representation should be
31;; maintained in the code to use general operations on sequences
32;; whenever possible. The optimization for the actual representation
33;; should be left to declarations and the compiler.
34;;----------------------------------------------------------------
35;; EXAMPLES: Suppose that variables are x and y. Then
36;;
37;; Monom x*y^2 ---> (1 2)
38;;
39;;----------------------------------------------------------------
40
41(defpackage "MONOM"
42 (:use :cl :ring)
43 (:export "MONOM"
44 "EXPONENT"
45 "MAKE-MONOM-VARIABLE"))
46
47(in-package :monom)
48
49(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
50
51(deftype exponent ()
52 "Type of exponent in a monomial."
53 'fixnum)
54
55(defclass monom ()
56 ((dimension :initarg :dimension :accessor r-dimension)
57 (exponents :initarg :exponents :accessor r-exponents))
58 (:default-initargs :dimension nil :exponents nil :exponent nil))
59
60(defmethod print-object ((self monom) stream)
61 (format stream "#<MONOM DIMENSION=~A EXPONENTS=~A>"
62 (r-dimension self)
63 (r-exponents self)))
64
65#|
66;; Debug calls to initialize-instance
67(defmethod shared-initialize ((self monom) slot-names
68 &rest
69 initargs
70 &key
71 &allow-other-keys)
72 (format t "MONOM::SHARED-INITIALIZE called with:~&SLOT-NAMES: ~W~&INITARGS: ~W.~%" slot-names initargs)
73 (call-next-method))
74|#
75
76(defmethod shared-initialize ((self monom) slot-names
77 &key
78 dimension
79 exponents
80 exponent
81 &allow-other-keys
82 )
83 (if (eq slot-names t) (setf slot-names '(dimension exponents)))
84 (dolist (slot-name slot-names)
85 (case slot-name
86 (dimension
87 (cond (dimension
88 (setf (slot-value self 'dimension) dimension))
89 (exponents
90 (setf (slot-value self 'dimension) (length exponents)))
91 (t
92 (error "DIMENSION or EXPONENTS must not be NIL"))))
93 (exponents
94 (cond
95 ;; when exponents are supplied
96 (exponents
97 (let ((dim (length exponents)))
98 (setf (slot-value self 'dimension) dim
99 (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
100 ;; when all exponents are to be identical
101 (t
102 (let ((dim (slot-value self 'dimension)))
103 (setf (slot-value self 'exponents)
104 (make-array (list dim) :initial-element (or exponent 0)
105 :element-type 'exponent)))))))))
106
107;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
108;;
109;; Operations on monomials
110;;
111;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
112
113(defmethod r-elt ((m monom) index)
114 "Return the power in the monomial M of variable number INDEX."
115 (with-slots (exponents)
116 m
117 (elt exponents index)))
118
119(defmethod (setf r-elt) (new-value (m monom) index)
120 "Return the power in the monomial M of variable number INDEX."
121 (with-slots (exponents)
122 m
123 (setf (elt exponents index) new-value)))
124
125(defmethod r-total-degree ((m monom) &optional (start 0) (end (r-dimension m)))
126 "Return the todal degree of a monomoal M. Optinally, a range
127of variables may be specified with arguments START and END."
128 (declare (type fixnum start end))
129 (with-slots (exponents)
130 m
131 (reduce #'+ exponents :start start :end end)))
132
133
134(defmethod r-sugar ((m monom) &aux (start 0) (end (r-dimension m)))
135 "Return the sugar of a monomial M. Optinally, a range
136of variables may be specified with arguments START and END."
137 (declare (type fixnum start end))
138 (r-total-degree m start end))
139
140(defmethod r* ((m1 monom) (m2 monom))
141 "Multiply monomial M1 by monomial M2."
142 (format t "MONOM::R* called with:~& M1: ~A~& M2: ~A~%" m1 m2)
143 (with-slots ((exponents1 exponents) dimension)
144 m1
145 (with-slots ((exponents2 exponents))
146 m2
147 (let* ((exponents (copy-seq exponents1)))
148 (map-into exponents #'+ exponents1 exponents2)
149 (make-instance 'monom :dimension dimension :exponents exponents)))))
150
151
152
153(defmethod r/ ((m1 monom) (m2 monom))
154 "Divide monomial M1 by monomial M2."
155 (with-slots ((exponents1 exponents) (dimension1 dimension))
156 m1
157 (with-slots ((exponents2 exponents))
158 m2
159 (let* ((exponents (copy-seq exponents1))
160 (dimension dimension1))
161 (map-into exponents #'- exponents1 exponents2)
162 (make-instance 'monom :dimension dimension :exponents exponents)))))
163
164(defmethod r-divides-p ((m1 monom) (m2 monom))
165 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
166 (with-slots ((exponents1 exponents))
167 m1
168 (with-slots ((exponents2 exponents))
169 m2
170 (every #'<= exponents1 exponents2))))
171
172
173(defmethod r-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
174 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
175 (every #'(lambda (x y z) (<= x (max y z)))
176 m1 m2 m3))
177
178
179(defmethod r-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
180 "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
181 (declare (type monom m1 m2 m3 m4))
182 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
183 m1 m2 m3 m4))
184
185(defmethod r-lcm-equal-lcm-p (m1 m2 m3 m4)
186 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
187 (with-slots ((exponents1 exponents))
188 m1
189 (with-slots ((exponents2 exponents))
190 m2
191 (with-slots ((exponents3 exponents))
192 m3
193 (with-slots ((exponents4 exponents))
194 m4
195 (every
196 #'(lambda (x y z w) (= (max x y) (max z w)))
197 exponents1 exponents2 exponents3 exponents4))))))
198
199(defmethod r-divisible-by-p ((m1 monom) (m2 monom))
200 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
201 (with-slots ((exponents1 exponents))
202 m1
203 (with-slots ((exponents2 exponents))
204 m2
205 (every #'>= exponents1 exponents2))))
206
207(defmethod r-rel-prime-p ((m1 monom) (m2 monom))
208 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
209 (with-slots ((exponents1 exponents))
210 m1
211 (with-slots ((exponents2 exponents))
212 m2
213 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
214
215
216(defmethod r-equalp ((m1 monom) (m2 monom))
217 "Returns T if two monomials M1 and M2 are equal."
218 (with-slots ((exponents1 exponents))
219 m1
220 (with-slots ((exponents2 exponents))
221 m2
222 (every #'= exponents1 exponents2))))
223
224(defmethod r-lcm ((m1 monom) (m2 monom))
225 "Returns least common multiple of monomials M1 and M2."
226 (with-slots ((exponents1 exponents) (dimension1 dimension))
227 m1
228 (with-slots ((exponents2 exponents))
229 m2
230 (let* ((exponents (copy-seq exponents1))
231 (dimension dimension1))
232 (map-into exponents #'max exponents1 exponents2)
233 (make-instance 'monom :dimension dimension :exponents exponents)))))
234
235
236(defmethod r-gcd ((m1 monom) (m2 monom))
237 "Returns greatest common divisor of monomials M1 and M2."
238 (with-slots ((exponents1 exponents) (dimension1 dimension))
239 m1
240 (with-slots ((exponents2 exponents))
241 m2
242 (let* ((exponents (copy-seq exponents1))
243 (dimension dimension1))
244 (map-into exponents #'min exponents1 exponents2)
245 (make-instance 'monom :dimension dimension :exponents exponents)))))
246
247(defmethod r-depends-p ((m monom) k)
248 "Return T if the monomial M depends on variable number K."
249 (declare (type fixnum k))
250 (with-slots (exponents)
251 m
252 (plusp (elt exponents k))))
253
254(defmethod r-tensor-product ((m1 monom) (m2 monom))
255 (with-slots ((exponents1 exponents) (dimension1 dimension))
256 m1
257 (with-slots ((exponents2 exponents) (dimension2 dimension))
258 m2
259 (make-instance 'monom
260 :dimension (+ dimension1 dimension2)
261 :exponents (concatenate 'vector exponents1 exponents2)))))
262
263(defmethod r-contract ((m monom) k)
264 "Drop the first K variables in monomial M."
265 (declare (fixnum k))
266 (with-slots (dimension exponents)
267 m
268 (setf dimension (- dimension k)
269 exponents (subseq exponents k))))
270
271(defun make-monom-variable (nvars pos &optional (power 1)
272 &aux (m (make-instance 'monom :dimension nvars)))
273 "Construct a monomial in the polynomial ring
274RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
275which represents a single variable. It assumes number of variables
276NVARS and the variable is at position POS. Optionally, the variable
277may appear raised to power POWER. "
278 (declare (type fixnum nvars pos power) (type monom m))
279 (with-slots (exponents)
280 m
281 (setf (elt exponents pos) power)
282 m))
283
284(defmethod r->list ((m monom))
285 "A human-readable representation of a monomial M as a list of exponents."
286 (coerce (r-exponents m) 'list))
Note: See TracBrowser for help on using the repository browser.