close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 2209

Last change on this file since 2209 was 2209, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 9.8 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22;;----------------------------------------------------------------
23;; This package implements BASIC OPERATIONS ON MONOMIALS
24;;----------------------------------------------------------------
25;; DATA STRUCTURES: Conceptually, monomials can be represented as lists:
26;;
27;; monom: (n1 n2 ... nk) where ni are non-negative integers
28;;
29;; However, lists may be implemented as other sequence types,
30;; so the flexibility to change the representation should be
31;; maintained in the code to use general operations on sequences
32;; whenever possible. The optimization for the actual representation
33;; should be left to declarations and the compiler.
34;;----------------------------------------------------------------
35;; EXAMPLES: Suppose that variables are x and y. Then
36;;
37;; Monom x*y^2 ---> (1 2)
38;;
39;;----------------------------------------------------------------
40
41(defpackage "MONOM"
42 (:use :cl :ring)
43 (:export "MONOM"
44 "EXPONENT"
45 "MAKE-MONOM"
46 "MONOM-DIMENSION"
47 "MONOM-EXPONENTS"
48 "MAKE-MONOM-VARIABLE"))
49
50(in-package :monom)
51
52(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
53
54(deftype exponent ()
55 "Type of exponent in a monomial."
56 'fixnum)
57
58(defclass monom ()
59 ((dimension :initarg :dimension :accessor monom-dimension)
60 (exponents :initarg :exponents :accessor monom-exponents))
61 (:default-initargs :dimension 0 :exponents nil))
62
63(defmethod print-object ((m monom) stream)
64 (princ (slot-value m 'exponents) stream))
65
66(defmethod initialize-instance :after ((self monom)
67 &key
68 (dimension nil dimension-suppied-p)
69 (exponents nil exponents-supplied-p)
70 (exponent nil exponent-supplied-p))
71 "A constructor (factory) of monomials. If DIMENSION is given, a
72sequence of DIMENSION elements of type EXPONENT is constructed, where
73individual elements are the value of EXPONENT, which defaults
74to 0. Alternatively, all elements may be specified as a list
75EXPONENTS."
76 (setf (slot-value self 'dimension) (cond (dimension-suppied-p dimension)
77 (exponents-supplied-p (length exponents))
78 (t (error "You must provide DIMENSION or EXPONENTS")))
79 (slot-value self 'exponents) (cond
80 ;; when exponents are supplied
81 (exponents-supplied-p
82 (when (and dimension-suppied-p (/= dimension (length exponents)))
83 (error "EXPONENTS must have length DIMENSION"))
84 (make-array (list dimension) :initial-contents exponents
85 :element-type 'exponent))
86 ;; when all exponents are to be identical
87 (exponent-supplied-p
88 (make-array (list dimension) :initial-element exponent
89 :element-type 'exponent))
90 ;; otherwise, all exponents are zero
91 (t
92 (make-array (list dimension) :element-type 'exponent :initial-element 0)))))
93
94;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
95;;
96;; Operations on monomials
97;;
98;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
99
100(defmethod r-dimension ((m monom))
101 (monom-dimension m))
102
103(defmethod r-elt ((m monom) index)
104 "Return the power in the monomial M of variable number INDEX."
105 (with-slots (exponents)
106 m
107 (elt exponents index)))
108
109(defmethod (setf r-elt) (new-value (m monom) index)
110 "Return the power in the monomial M of variable number INDEX."
111 (with-slots (exponents)
112 m
113 (setf (elt exponents index) new-value)))
114
115(defmethod r-total-degree ((m monom) &optional (start 0) (end (r-dimension m)))
116 "Return the todal degree of a monomoal M. Optinally, a range
117of variables may be specified with arguments START and END."
118 (declare (type fixnum start end))
119 (with-slots (exponents)
120 m
121 (reduce #'+ exponents :start start :end end)))
122
123
124(defmethod r-sugar ((m monom) &aux (start 0) (end (r-dimension m)))
125 "Return the sugar of a monomial M. Optinally, a range
126of variables may be specified with arguments START and END."
127 (declare (type fixnum start end))
128 (r-total-degree m start end))
129
130(defmethod r* ((m1 monom) (m2 monom))
131 "Multiply monomial M1 by monomial M2."
132 (with-slots ((exponents1 exponents) dimension)
133 m1
134 (with-slots ((exponents2 exponents))
135 m2
136 (let* ((exponents (copy-seq exponents1)))
137 (map-into exponents #'+ exponents1 exponents2)
138 (make-instance 'monom :dimension dimension :exponents exponents)))))
139
140
141
142(defmethod r/ ((m1 monom) (m2 monom))
143 "Divide monomial M1 by monomial M2."
144 (with-slots ((exponents1 exponents))
145 m1
146 (with-slots ((exponents2 exponents))
147 m2
148 (let* ((exponents (copy-seq exponents1))
149 (dimension (reduce #'+ exponents)))
150 (map-into exponents #'- exponents1 exponents2)
151 (make-instance 'monom :dimension dimension :exponents exponents)))))
152
153(defmethod r-divides-p ((m1 monom) (m2 monom))
154 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
155 (with-slots ((exponents1 exponents))
156 m1
157 (with-slots ((exponents2 exponents))
158 m2
159 (every #'<= exponents1 exponents2))))
160
161
162(defmethod r-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
163 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
164 (every #'(lambda (x y z) (<= x (max y z)))
165 m1 m2 m3))
166
167
168(defmethod r-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
169 "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
170 (declare (type monom m1 m2 m3 m4))
171 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
172 m1 m2 m3 m4))
173
174(defmethod r-lcm-equal-lcm-p (m1 m2 m3 m4)
175 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
176 (with-slots ((exponents1 exponents))
177 m1
178 (with-slots ((exponents2 exponents))
179 m2
180 (with-slots ((exponents3 exponents))
181 m3
182 (with-slots ((exponents4 exponents))
183 m4
184 (every
185 #'(lambda (x y z w) (= (max x y) (max z w)))
186 exponents1 exponents2 exponents3 exponents4))))))
187
188(defmethod r-divisible-by-p ((m1 monom) (m2 monom))
189 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
190 (with-slots ((exponents1 exponents))
191 m1
192 (with-slots ((exponents2 exponents))
193 m2
194 (every #'>= exponents1 exponents2))))
195
196(defmethod r-rel-prime-p ((m1 monom) (m2 monom))
197 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
198 (with-slots ((exponents1 exponents))
199 m1
200 (with-slots ((exponents2 exponents))
201 m2
202 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
203
204
205(defmethod r-equalp ((m1 monom) (m2 monom))
206 "Returns T if two monomials M1 and M2 are equal."
207 (with-slots ((exponents1 exponents))
208 m1
209 (with-slots ((exponents2 exponents))
210 m2
211 (every #'= exponents1 exponents2))))
212
213(defmethod r-lcm ((m1 monom) (m2 monom))
214 "Returns least common multiple of monomials M1 and M2."
215 (with-slots ((exponents1 exponents))
216 m1
217 (with-slots ((exponents2 exponents))
218 m2
219 (let* ((exponents (copy-seq exponents1))
220 (dimension (reduce #'+ exponents)))
221 (map-into exponents #'max exponents1 exponents2)
222 (make-instance 'monom :dimension dimension :exponents exponents)))))
223
224
225(defmethod r-gcd ((m1 monom) (m2 monom))
226 "Returns greatest common divisor of monomials M1 and M2."
227 (with-slots ((exponents1 exponents))
228 m1
229 (with-slots ((exponents2 exponents))
230 m2
231 (let* ((exponents (copy-seq exponents1))
232 (dimension (reduce #'+ exponents)))
233 (map-into exponents #'min exponents1 exponents2)
234 (make-instance 'monom :dimension dimension :exponents exponents)))))
235
236(defmethod r-depends-p ((m monom) k)
237 "Return T if the monomial M depends on variable number K."
238 (declare (type fixnum k))
239 (with-slots (exponents)
240 m
241 (plusp (elt exponents k))))
242
243(defmethod r-tensor-product ((m1 monom) (m2 monom)
244 &aux (dimension (+ (r-dimension m1) (r-dimension m2))))
245 (declare (fixnum dimension))
246 (with-slots ((exponents1 exponents))
247 m1
248 (with-slots ((exponents2 exponents))
249 m2
250 (make-instance 'monom
251 :dimension dimension
252 :exponents (concatenate 'vector exponents1 exponents2)))))
253
254(defmethod r-contract ((m monom) k)
255 "Drop the first K variables in monomial M."
256 (declare (fixnum k))
257 (with-slots (dimension exponents)
258 m
259 (setf dimension (- dimension k)
260 exponents (subseq exponents k))))
261
262(defun make-monom-variable (nvars pos &optional (power 1)
263 &aux (m (make-monom :dimension nvars)))
264 "Construct a monomial in the polynomial ring
265RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
266which represents a single variable. It assumes number of variables
267NVARS and the variable is at position POS. Optionally, the variable
268may appear raised to power POWER. "
269 (declare (type fixnum nvars pos power) (type monom m))
270 (with-slots (exponents)
271 m
272 (setf (elt exponents pos) power)
273 m))
274
275(defmethod r->list ((m monom))
276 "A human-readable representation of a monomial M as a list of exponents."
277 (coerce (monom-exponents m) 'list))
Note: See TracBrowser for help on using the repository browser.