| 1 | ;;; -*- Mode: Lisp -*-
|
|---|
| 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|---|
| 3 | ;;;
|
|---|
| 4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
|---|
| 5 | ;;;
|
|---|
| 6 | ;;; This program is free software; you can redistribute it and/or modify
|
|---|
| 7 | ;;; it under the terms of the GNU General Public License as published by
|
|---|
| 8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
|---|
| 9 | ;;; (at your option) any later version.
|
|---|
| 10 | ;;;
|
|---|
| 11 | ;;; This program is distributed in the hope that it will be useful,
|
|---|
| 12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|---|
| 13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|---|
| 14 | ;;; GNU General Public License for more details.
|
|---|
| 15 | ;;;
|
|---|
| 16 | ;;; You should have received a copy of the GNU General Public License
|
|---|
| 17 | ;;; along with this program; if not, write to the Free Software
|
|---|
| 18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|---|
| 19 | ;;;
|
|---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|---|
| 21 |
|
|---|
| 22 | ;;----------------------------------------------------------------
|
|---|
| 23 | ;; This package implements BASIC OPERATIONS ON MONOMIALS
|
|---|
| 24 | ;;----------------------------------------------------------------
|
|---|
| 25 | ;; DATA STRUCTURES: Conceptually, monomials can be represented as lists:
|
|---|
| 26 | ;;
|
|---|
| 27 | ;; monom: (n1 n2 ... nk) where ni are non-negative integers
|
|---|
| 28 | ;;
|
|---|
| 29 | ;; However, lists may be implemented as other sequence types,
|
|---|
| 30 | ;; so the flexibility to change the representation should be
|
|---|
| 31 | ;; maintained in the code to use general operations on sequences
|
|---|
| 32 | ;; whenever possible. The optimization for the actual representation
|
|---|
| 33 | ;; should be left to declarations and the compiler.
|
|---|
| 34 | ;;----------------------------------------------------------------
|
|---|
| 35 | ;; EXAMPLES: Suppose that variables are x and y. Then
|
|---|
| 36 | ;;
|
|---|
| 37 | ;; Monom x*y^2 ---> (1 2)
|
|---|
| 38 | ;;
|
|---|
| 39 | ;;----------------------------------------------------------------
|
|---|
| 40 |
|
|---|
| 41 | (defpackage "MONOM"
|
|---|
| 42 | (:use :cl :ring)
|
|---|
| 43 | (:shadowing-import-from :ring "ZEROP" "LCM" "GCD" "+" "-" "*" "/" "EXPT")
|
|---|
| 44 | (:export "MONOM"
|
|---|
| 45 | "EXPONENT"
|
|---|
| 46 | "MAKE-MONOM"
|
|---|
| 47 | "MAKE-MONOM-VARIABLE"
|
|---|
| 48 | "MONOM-ELT"
|
|---|
| 49 | "MONOM-DIMENSION"
|
|---|
| 50 | "MONOM-TOTAL-DEGREE"
|
|---|
| 51 | "MONOM-SUGAR"
|
|---|
| 52 | "MONOM-DIV"
|
|---|
| 53 | "MONOM-MUL"
|
|---|
| 54 | "MONOM-DIVIDES-P"
|
|---|
| 55 | "MONOM-DIVIDES-MONOM-LCM-P"
|
|---|
| 56 | "MONOM-LCM-DIVIDES-MONOM-LCM-P"
|
|---|
| 57 | "MONOM-LCM-EQUAL-MONOM-LCM-P"
|
|---|
| 58 | "MONOM-DIVISIBLE-BY-P"
|
|---|
| 59 | "MONOM-REL-PRIME-P"
|
|---|
| 60 | "MONOM-EQUAL-P"
|
|---|
| 61 | "MONOM-LCM"
|
|---|
| 62 | "MONOM-GCD"
|
|---|
| 63 | "MONOM-DEPENDS-P"
|
|---|
| 64 | "MONOM-MAP"
|
|---|
| 65 | "MONOM-APPEND"
|
|---|
| 66 | "MONOM-CONTRACT"
|
|---|
| 67 | "MONOM->LIST"))
|
|---|
| 68 |
|
|---|
| 69 | (in-package :monom)
|
|---|
| 70 |
|
|---|
| 71 | (proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
|
|---|
| 72 |
|
|---|
| 73 | (deftype exponent ()
|
|---|
| 74 | "Type of exponent in a monomial."
|
|---|
| 75 | 'fixnum)
|
|---|
| 76 |
|
|---|
| 77 | (defclass monom ()
|
|---|
| 78 | ((dim :initarg :dim )
|
|---|
| 79 | (exponents :initarg :exponents))
|
|---|
| 80 | (:default-initargs :dim 0 :exponents nil))
|
|---|
| 81 |
|
|---|
| 82 | (defmethod print-object ((m monom) stream)
|
|---|
| 83 | (princ (slot-value m 'exponents) stream))
|
|---|
| 84 |
|
|---|
| 85 | ;; If a monomial is redefined as structure with slot EXPONENTS, the function
|
|---|
| 86 | ;; below can be the BOA constructor.
|
|---|
| 87 | (defun make-monom (&key
|
|---|
| 88 | (dimension nil dimension-suppied-p)
|
|---|
| 89 | (initial-exponents nil initial-exponents-supplied-p)
|
|---|
| 90 | (initial-exponent nil initial-exponent-supplied-p)
|
|---|
| 91 | &aux
|
|---|
| 92 | (dim (cond (dimension-suppied-p dimension)
|
|---|
| 93 | (initial-exponents-supplied-p (length initial-exponents))
|
|---|
| 94 | (t (error "You must provide DIMENSION or INITIAL-EXPONENTS"))))
|
|---|
| 95 | (exponents (cond
|
|---|
| 96 | ;; when exponents are supplied
|
|---|
| 97 | (initial-exponents-supplied-p
|
|---|
| 98 | (make-array (list dim) :initial-contents initial-exponents
|
|---|
| 99 | :element-type 'exponent))
|
|---|
| 100 | ;; when all exponents are to be identical
|
|---|
| 101 | (initial-exponent-supplied-p
|
|---|
| 102 | (make-array (list dim) :initial-element initial-exponent
|
|---|
| 103 | :element-type 'exponent))
|
|---|
| 104 | ;; otherwise, all exponents are zero
|
|---|
| 105 | (t
|
|---|
| 106 | (make-array (list dim) :element-type 'exponent :initial-element 0)))))
|
|---|
| 107 | "A constructor (factory) of monomials. If DIMENSION is given, a sequence of
|
|---|
| 108 | DIMENSION elements of type EXPONENT is constructed, where individual
|
|---|
| 109 | elements are the value of INITIAL-EXPONENT, which defaults to 0.
|
|---|
| 110 | Alternatively, all elements may be specified as a list
|
|---|
| 111 | INITIAL-EXPONENTS."
|
|---|
| 112 | (make-instance 'monom :dim dim :exponents exponents))
|
|---|
| 113 |
|
|---|
| 114 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|---|
| 115 | ;;
|
|---|
| 116 | ;; Operations on monomials
|
|---|
| 117 | ;;
|
|---|
| 118 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|---|
| 119 |
|
|---|
| 120 | (defmethod dimension ((m monom))
|
|---|
| 121 | (slot-value m 'dim))
|
|---|
| 122 |
|
|---|
| 123 | (defmethod ring-elt ((m monom) index)
|
|---|
| 124 | "Return the power in the monomial M of variable number INDEX."
|
|---|
| 125 | (with-slots (exponents)
|
|---|
| 126 | m
|
|---|
| 127 | (elt exponents index)))
|
|---|
| 128 |
|
|---|
| 129 | (defmethod (setf ring-elt) (new-value (m monom) index)
|
|---|
| 130 | "Return the power in the monomial M of variable number INDEX."
|
|---|
| 131 | (with-slots (exponents)
|
|---|
| 132 | m
|
|---|
| 133 | (setf (elt exponents index) new-value)))
|
|---|
| 134 |
|
|---|
| 135 | (defmethod total-degree ((m monom) &optional (start 0) (end (dimension m)))
|
|---|
| 136 | "Return the todal degree of a monomoal M. Optinally, a range
|
|---|
| 137 | of variables may be specified with arguments START and END."
|
|---|
| 138 | (declare (type fixnum start end))
|
|---|
| 139 | (with-slots (exponents)
|
|---|
| 140 | m
|
|---|
| 141 | (reduce #'cl:+ exponents :start start :end end)))
|
|---|
| 142 |
|
|---|
| 143 |
|
|---|
| 144 | (defmethod sugar ((m monom) &aux (start 0) (end (dimension m)))
|
|---|
| 145 | "Return the sugar of a monomial M. Optinally, a range
|
|---|
| 146 | of variables may be specified with arguments START and END."
|
|---|
| 147 | (declare (type fixnum start end))
|
|---|
| 148 | (with-slots (exponents)
|
|---|
| 149 | m
|
|---|
| 150 | (total-degree exponents start end)))
|
|---|
| 151 |
|
|---|
| 152 | (defmethod + ((m1 monom) (m2 monom))
|
|---|
| 153 | "Multiply monomial M1 by monomial M2."
|
|---|
| 154 | (with-slots ((exponents1 exponents))
|
|---|
| 155 | m1
|
|---|
| 156 | (with-slots ((exponents2 exponents))
|
|---|
| 157 | m2
|
|---|
| 158 | (let* ((exponents (copy-seq exponents1))
|
|---|
| 159 | (dim (reduce #'cl:+ exponents)))
|
|---|
| 160 | (map-into exponents #'cl:+ exponents1 exponents2)
|
|---|
| 161 | (make-instance 'monom :dim dim :exponents exponents)))))
|
|---|
| 162 |
|
|---|
| 163 |
|
|---|
| 164 |
|
|---|
| 165 | (defmethod / ((m1 monom) (m2 monom))
|
|---|
| 166 | "Divide monomial M1 by monomial M2."
|
|---|
| 167 | (with-slots ((exponents1 exponents))
|
|---|
| 168 | m1
|
|---|
| 169 | (with-slots ((exponents2 exponents))
|
|---|
| 170 | m2
|
|---|
| 171 | (let* ((exponents (copy-seq exponents1))
|
|---|
| 172 | (dim (reduce #'cl:+ exponents)))
|
|---|
| 173 | (map-into exponents #'cl:- exponents1 exponents2)
|
|---|
| 174 | (make-instance 'monom :dim dim :exponents exponents)))))
|
|---|
| 175 |
|
|---|
| 176 | (defmethod divides-p ((m1 monom) (m2 monom))
|
|---|
| 177 | "Returns T if monomial M1 divides monomial M2, NIL otherwise."
|
|---|
| 178 | (with-slots ((exponents1 exponents))
|
|---|
| 179 | m1
|
|---|
| 180 | (with-slots ((exponents2 exponents))
|
|---|
| 181 | m2
|
|---|
| 182 | (every #'<= exponents1 exponents2))))
|
|---|
| 183 |
|
|---|
| 184 |
|
|---|
| 185 | (defmethod divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
|
|---|
| 186 | "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
|
|---|
| 187 | (every #'(lambda (x y z) (<= x (max y z)))
|
|---|
| 188 | m1 m2 m3))
|
|---|
| 189 |
|
|---|
| 190 |
|
|---|
| 191 | (defmethod lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
|
|---|
| 192 | "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
|
|---|
| 193 | (declare (type monom m1 m2 m3 m4))
|
|---|
| 194 | (every #'(lambda (x y z w) (<= (max x y) (max z w)))
|
|---|
| 195 | m1 m2 m3 m4))
|
|---|
| 196 |
|
|---|
| 197 | (defmethod lcm-equal-lcm-p (m1 m2 m3 m4)
|
|---|
| 198 | "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
|
|---|
| 199 | (with-slots (exponents1 exponents)
|
|---|
| 200 | m1
|
|---|
| 201 | (with-slots (exponents2 exponents)
|
|---|
| 202 | m2
|
|---|
| 203 | (with-slots (exponents3 exponents)
|
|---|
| 204 | m3
|
|---|
| 205 | (with-slots (exponents4 exponents)
|
|---|
| 206 | m4
|
|---|
| 207 | (every
|
|---|
| 208 | #'(lambda (x y z w) (= (max x y) (max z w)))
|
|---|
| 209 | exponents1 exponents2 exponents3 exponents4))))))
|
|---|
| 210 |
|
|---|
| 211 | (defmethod divisible-by-p ((m1 monom) (m2 monom))
|
|---|
| 212 | "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
|
|---|
| 213 |
|
|---|
| 214 | (every #'>= m1 m2))
|
|---|
| 215 |
|
|---|
| 216 | (defmethod rel-prime-p ((m1 monom) (m2 monom))
|
|---|
| 217 | "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
|
|---|
| 218 | (with-slots (exponents1 exponents)
|
|---|
| 219 | m1
|
|---|
| 220 | (with-slots (exponents2 exponents)
|
|---|
| 221 | m2
|
|---|
| 222 | (every #'(lambda (x y) (cl:zerop (min x y))) exponents1 exponents2))))
|
|---|
| 223 |
|
|---|
| 224 |
|
|---|
| 225 | (defmethod equal-p ((m1 monom) (m2 monom))
|
|---|
| 226 | "Returns T if two monomials M1 and M2 are equal."
|
|---|
| 227 | (with-slots (exponents1 exponents)
|
|---|
| 228 | m1
|
|---|
| 229 | (with-slots (exponents2 exponents)
|
|---|
| 230 | m2
|
|---|
| 231 | (every #'= exponents1 exponents2))))
|
|---|
| 232 |
|
|---|
| 233 | (defmethod lcm ((m1 monom) (m2 monom))
|
|---|
| 234 | "Returns least common multiple of monomials M1 and M2."
|
|---|
| 235 | (with-slots (exponents1 exponents)
|
|---|
| 236 | m1
|
|---|
| 237 | (with-slots (exponents2 exponents)
|
|---|
| 238 | m2
|
|---|
| 239 | (let* ((exponents (copy-seq exponents1))
|
|---|
| 240 | (dim (reduce #'cl:+ exponents)))
|
|---|
| 241 | (map-into exponents #'max exponents1 exponents2)
|
|---|
| 242 | (make-instance 'monom :dim dim :exponents exponents)))))
|
|---|
| 243 |
|
|---|
| 244 |
|
|---|
| 245 | (defmethod gcd ((m1 monom) (m2 monom))
|
|---|
| 246 | "Returns greatest common divisor of monomials M1 and M2."
|
|---|
| 247 | (with-slots (exponents1 exponents)
|
|---|
| 248 | m1
|
|---|
| 249 | (with-slots (exponents2 exponents)
|
|---|
| 250 | m2
|
|---|
| 251 | (let* ((exponents (copy-seq exponents1))
|
|---|
| 252 | (dim (reduce #'cl:+ exponents)))
|
|---|
| 253 | (map-into exponents #'min exponents1 exponents2)
|
|---|
| 254 | (make-instance 'monom :dim dim :exponents exponents)))))
|
|---|
| 255 |
|
|---|
| 256 | (defmethod depends-p ((m monom) k)
|
|---|
| 257 | "Return T if the monomial M depends on variable number K."
|
|---|
| 258 | (declare (type fixnum k))
|
|---|
| 259 | (with-slots (exponents)
|
|---|
| 260 | m
|
|---|
| 261 | (plusp (elt exponents k))))
|
|---|
| 262 |
|
|---|
| 263 | (defmethod ring-tensor-mul ((m1 monom) (m2 monom)
|
|---|
| 264 | &aux (dim (cl:+ (dimension m1) (dimension m2))))
|
|---|
| 265 | (declare (fixnum dim))
|
|---|
| 266 | (with-slots (exponents1 exponents)
|
|---|
| 267 | m1
|
|---|
| 268 | (with-slots (exponents2 exponents)
|
|---|
| 269 | m2
|
|---|
| 270 | (make-instance 'monom
|
|---|
| 271 | :dim dim
|
|---|
| 272 | :exponents (concatenate 'vector exponents1 exponents2)))))
|
|---|
| 273 |
|
|---|
| 274 | (defmethod contract ((m monom) k)
|
|---|
| 275 | "Drop the first K variables in monomial M."
|
|---|
| 276 | (declare (fixnum k))
|
|---|
| 277 | (with-slots (dim exponents)
|
|---|
| 278 | m
|
|---|
| 279 | (setf dim (- dim k)
|
|---|
| 280 | exponents (subseq exponents k))))
|
|---|
| 281 |
|
|---|
| 282 | (defun make-monom-variable (nvars pos &optional (power 1)
|
|---|
| 283 | &aux (m (make-monom :dimension nvars)))
|
|---|
| 284 | "Construct a monomial in the polynomial ring
|
|---|
| 285 | RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
|
|---|
| 286 | which represents a single variable. It assumes number of variables
|
|---|
| 287 | NVARS and the variable is at position POS. Optionally, the variable
|
|---|
| 288 | may appear raised to power POWER. "
|
|---|
| 289 | (declare (type fixnum nvars pos power) (type monom m))
|
|---|
| 290 | (with-slots (exponents)
|
|---|
| 291 | m
|
|---|
| 292 | (setf (elt exponents pos) power)
|
|---|
| 293 | m))
|
|---|
| 294 |
|
|---|
| 295 | (defmethod monom->list ((m monom))
|
|---|
| 296 | "A human-readable representation of a monomial M as a list of exponents."
|
|---|
| 297 | (with-slots (exponents)
|
|---|
| 298 | m
|
|---|
| 299 | (coerce exponents 'list)))
|
|---|