close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 2026

Last change on this file since 2026 was 2026, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 8.6 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22;;----------------------------------------------------------------
23;; This package implements BASIC OPERATIONS ON MONOMIALS
24;;----------------------------------------------------------------
25;; DATA STRUCTURES: Conceptually, monomials can be represented as lists:
26;;
27;; monom: (n1 n2 ... nk) where ni are non-negative integers
28;;
29;; However, lists may be implemented as other sequence types,
30;; so the flexibility to change the representation should be
31;; maintained in the code to use general operations on sequences
32;; whenever possible. The optimization for the actual representation
33;; should be left to declarations and the compiler.
34;;----------------------------------------------------------------
35;; EXAMPLES: Suppose that variables are x and y. Then
36;;
37;; Monom x*y^2 ---> (1 2)
38;;
39;;----------------------------------------------------------------
40
41(defpackage "MONOM"
42 (:use :cl :ring)
43 (:export "MONOM"
44 "EXPONENT"
45 "MAKE-MONOM"
46 "MAKE-MONOM-VARIABLE"
47 "MONOM-ELT"
48 "MONOM-DIMENSION"
49 "MONOM-TOTAL-DEGREE"
50 "MONOM-SUGAR"
51 "MONOM-DIV"
52 "MONOM-MUL"
53 "MONOM-DIVIDES-P"
54 "MONOM-DIVIDES-MONOM-LCM-P"
55 "MONOM-LCM-DIVIDES-MONOM-LCM-P"
56 "MONOM-LCM-EQUAL-MONOM-LCM-P"
57 "MONOM-DIVISIBLE-BY-P"
58 "MONOM-REL-PRIME-P"
59 "MONOM-EQUAL-P"
60 "MONOM-LCM"
61 "MONOM-GCD"
62 "MONOM-DEPENDS-P"
63 "MONOM-MAP"
64 "MONOM-APPEND"
65 "MONOM-CONTRACT"
66 "MONOM->LIST"))
67
68(in-package :monom)
69
70(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
71
72(deftype exponent ()
73 "Type of exponent in a monomial."
74 'fixnum)
75
76(defclass monom ()
77 ((dim :initarg :dimension)
78 (exponents :initarg :exponents))
79 (:default-initargs :dim 0 :exponents nil))
80
81;; If a monomial is redefined as structure with slot EXPONENTS, the function
82;; below can be the BOA constructor.
83(defun make-monom (&key
84 (dimension nil dimension-suppied-p)
85 (initial-exponents nil initial-exponents-supplied-p)
86 (initial-exponent nil initial-exponent-supplied-p)
87 &aux
88 (dim (cond (dimension-suppied-p dimension)
89 (initial-exponents-supplied-p (length initial-exponents))
90 (t (error "You must provide DIMENSION nor INITIAL-EXPONENTS"))))
91 (exponents (cond
92 ;; when exponents are supplied
93 (initial-exponents-supplied-p
94 (make-array (list dim) :initial-contents initial-exponents
95 :element-type 'exponent))
96 ;; when all exponents are to be identical
97 (initial-exponent-supplied-p
98 (make-array (list dim) :initial-element initial-exponent
99 :element-type 'exponent))
100 ;; otherwise, all exponents are zero
101 (t
102 (make-array (list dim) :element-type 'exponent :initial-element 0)))))
103 "A constructor (factory) of monomials. If DIMENSION is given, a sequence of
104DIMENSION elements of type EXPONENT is constructed, where individual
105elements are the value of INITIAL-EXPONENT, which defaults to 0.
106Alternatively, all elements may be specified as a list
107INITIAL-EXPONENTS."
108 (make-instance 'monom :dim dim :exponents exponents))
109
110;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
111;;
112;; Operations on monomials
113;;
114;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
115
116(defmethod dimension ((m monom))
117 (slot-value m 'dim))
118
119(defmethod ring-elt ((m monom) index)
120 "Return the power in the monomial M of variable number INDEX."
121 (with-slots (exponents)
122 m
123 (elt exponents index)))
124
125(defmethod (setf ring-elt) (new-value (m monom) index)
126 "Return the power in the monomial M of variable number INDEX."
127 (with-slots (exponents)
128 m
129 (elt exponents index)))
130
131(defmethod ring-total-degree ((m monom) &optional (start 0) (end (dimension m)))
132 "Return the todal degree of a monomoal M. Optinally, a range
133of variables may be specified with arguments START and END."
134 (declare (type fixnum start end))
135 (with-slots (exponents)
136 m
137 (reduce #'+ exponents :start start :end end)))
138
139#|
140(defun monom-sugar (m &aux (start 0) (end (monom-dimension m)))
141 "Return the sugar of a monomial M. Optinally, a range
142of variables may be specified with arguments START and END."
143 (declare (type monom m) (type fixnum start end))
144 (monom-total-degree m start end))
145
146(defun monom-div (m1 m2 &aux (result (copy-seq m1)))
147 "Divide monomial M1 by monomial M2."
148 (declare (type monom m1 m2 result))
149 (map-into result #'- m1 m2))
150
151(defun monom-mul (m1 m2 &aux (result (copy-seq m1)))
152 "Multiply monomial M1 by monomial M2."
153 (declare (type monom m1 m2 result))
154 (map-into result #'+ m1 m2))
155
156(defun monom-divides-p (m1 m2)
157 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
158 (declare (type monom m1 m2))
159 (every #'<= m1 m2))
160
161(defun monom-divides-monom-lcm-p (m1 m2 m3)
162 "Returns T if monomial M1 divides MONOM-LCM(M2,M3), NIL otherwise."
163 (declare (type monom m1 m2 m3))
164 (every #'(lambda (x y z) (<= x (max y z)))
165 m1 m2 m3))
166
167(defun monom-lcm-divides-monom-lcm-p (m1 m2 m3 m4)
168 "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
169 (declare (type monom m1 m2 m3 m4))
170 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
171 m1 m2 m3 m4))
172
173
174(defun monom-lcm-equal-monom-lcm-p (m1 m2 m3 m4)
175 "Returns T if monomial MONOM-LCM(M1,M2) equals MONOM-LCM(M3,M4), NIL otherwise."
176 (declare (type monom m1 m2 m3 m4))
177 (every #'(lambda (x y z w) (= (max x y) (max z w)))
178 m1 m2 m3 m4))
179
180
181(defun monom-divisible-by-p (m1 m2)
182 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
183 (declare (type monom m1 m2))
184 (every #'>= m1 m2))
185
186(defun monom-rel-prime-p (m1 m2)
187 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
188 (declare (type monom m1 m2))
189 (every #'(lambda (x y) (zerop (min x y))) m1 m2))
190
191(defun monom-equal-p (m1 m2)
192 "Returns T if two monomials M1 and M2 are equal."
193 (declare (type monom m1 m2))
194 (every #'= m1 m2))
195
196(defun monom-lcm (m1 m2 &aux (result (copy-seq m1)))
197 "Returns least common multiple of monomials M1 and M2."
198 (declare (type monom m1 m2 result))
199 (map-into result #'max m1 m2))
200
201(defun monom-gcd (m1 m2 &aux (result (copy-seq m1)))
202 "Returns greatest common divisor of monomials M1 and M2."
203 (declare (type monom m1 m2 result))
204 (map-into result #'min m1 m2))
205
206(defun monom-depends-p (m k)
207 "Return T if the monomial M depends on variable number K."
208 (declare (type monom m) (type fixnum k))
209 (plusp (monom-elt m k)))
210
211(defmacro monom-map (fun m &rest ml &aux (result `(copy-seq ,m)))
212 "Map function FUN of one argument over the powers of a monomial M.
213Fun should map a single FIXNUM argument to FIXNUM. Return a sequence
214of results."
215 `(map-into ,result ,fun ,m ,@ml))
216
217(defun monom-append (m1 m2 &aux (dim (+ (length m1) (length m2))))
218 (declare (type monom m1 m2) (fixnum dim))
219 (concatenate `(monom ,dim) m1 m2))
220
221(defun monom-contract (m k)
222 "Drop the first K variables in monomial M."
223 (declare (type monom m) (fixnum k))
224 (subseq m k))
225
226(defun make-monom-variable (nvars pos &optional (power 1)
227 &aux (m (make-monom :dimension nvars)))
228 "Construct a monomial in the polynomial ring
229RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
230which represents a single variable. It assumes number of variables
231NVARS and the variable is at position POS. Optionally, the variable
232may appear raised to power POWER. "
233 (declare (type fixnum nvars pos power) (type monom m))
234 (setf (monom-elt m pos) power)
235 m)
236
237(defun monom->list (m)
238 "A human-readable representation of a monomial M as a list of exponents."
239 (declare (type monom m))
240 (coerce m 'list))
241|#
Note: See TracBrowser for help on using the repository browser.