close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 2022

Last change on this file since 2022 was 2022, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 8.3 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22;;----------------------------------------------------------------
23;; This package implements BASIC OPERATIONS ON MONOMIALS
24;;----------------------------------------------------------------
25;; DATA STRUCTURES: Conceptually, monomials can be represented as lists:
26;;
27;; monom: (n1 n2 ... nk) where ni are non-negative integers
28;;
29;; However, lists may be implemented as other sequence types,
30;; so the flexibility to change the representation should be
31;; maintained in the code to use general operations on sequences
32;; whenever possible. The optimization for the actual representation
33;; should be left to declarations and the compiler.
34;;----------------------------------------------------------------
35;; EXAMPLES: Suppose that variables are x and y. Then
36;;
37;; Monom x*y^2 ---> (1 2)
38;;
39;;----------------------------------------------------------------
40
41(defpackage "MONOM"
42 (:use :cl)
43 (:export "MONOM"
44 "EXPONENT"
45 "MAKE-MONOM"
46 "MAKE-MONOM-VARIABLE"
47 "MONOM-ELT"
48 "MONOM-DIMENSION"
49 "MONOM-TOTAL-DEGREE"
50 "MONOM-SUGAR"
51 "MONOM-DIV"
52 "MONOM-MUL"
53 "MONOM-DIVIDES-P"
54 "MONOM-DIVIDES-MONOM-LCM-P"
55 "MONOM-LCM-DIVIDES-MONOM-LCM-P"
56 "MONOM-LCM-EQUAL-MONOM-LCM-P"
57 "MONOM-DIVISIBLE-BY-P"
58 "MONOM-REL-PRIME-P"
59 "MONOM-EQUAL-P"
60 "MONOM-LCM"
61 "MONOM-GCD"
62 "MONOM-DEPENDS-P"
63 "MONOM-MAP"
64 "MONOM-APPEND"
65 "MONOM-CONTRACT"
66 "MONOM->LIST"))
67
68(in-package :monom)
69
70(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
71
72(deftype exponent ()
73 "Type of exponent in a monomial."
74 'fixnum)
75
76(defclass monom ()
77 ((dim :initarg :dimension)
78 (exponents :initarg :exponents))
79 (:default-initargs :dim 0 :exponents nil))
80
81;; If a monomial is redefined as structure with slot EXPONENTS, the function
82;; below can be the BOA constructor.
83(defun make-monom (&key
84 (dimension nil dimension-suppied-p)
85 (initial-exponents nil initial-exponents-supplied-p)
86 (initial-exponent nil initial-exponent-supplied-p)
87 &aux
88 (dim (cond (dimension-suppied-p dimension)
89 (initial-exponents-supplied-p (length initial-exponents))
90 (t (error "You must provide DIMENSION nor INITIAL-EXPONENTS"))))
91 (exponents (cond
92 ;; when exponents are supplied
93 (initial-exponents-supplied-p
94 (make-array (list dim) :initial-contents initial-exponents
95 :element-type 'exponent))
96 ;; when all exponents are to be identical
97 (initial-exponent-supplied-p
98 (make-array (list dim) :initial-element initial-exponent
99 :element-type 'exponent))
100 ;; otherwise, all exponents are zero
101 (t
102 (make-array (list dim) :element-type 'exponent :initial-element 0)))))
103 "A constructor (factory) of monomials. If DIMENSION is given, a sequence of
104DIMENSION elements of type EXPONENT is constructed, where individual
105elements are the value of INITIAL-EXPONENT, which defaults to 0.
106Alternatively, all elements may be specified as a list
107INITIAL-EXPONENTS."
108 (make-instance 'monom :dim dim :exponents exponents))
109
110;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
111;;
112;; Operations on monomials
113;;
114;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
115
116(defun monom-dimension (m)
117 (declare (type monom m))
118 (length m))
119
120(defmacro monom-elt (m index)
121 "Return the power in the monomial M of variable number INDEX."
122 `(elt ,m ,index))
123
124(defun monom-total-degree (m &optional (start 0) (end (monom-dimension m)))
125 "Return the todal degree of a monomoal M. Optinally, a range
126of variables may be specified with arguments START and END."
127 (declare (type monom m) (type fixnum start end))
128 (reduce #'+ m :start start :end end))
129
130(defun monom-sugar (m &aux (start 0) (end (monom-dimension m)))
131 "Return the sugar of a monomial M. Optinally, a range
132of variables may be specified with arguments START and END."
133 (declare (type monom m) (type fixnum start end))
134 (monom-total-degree m start end))
135
136(defun monom-div (m1 m2 &aux (result (copy-seq m1)))
137 "Divide monomial M1 by monomial M2."
138 (declare (type monom m1 m2 result))
139 (map-into result #'- m1 m2))
140
141(defun monom-mul (m1 m2 &aux (result (copy-seq m1)))
142 "Multiply monomial M1 by monomial M2."
143 (declare (type monom m1 m2 result))
144 (map-into result #'+ m1 m2))
145
146(defun monom-divides-p (m1 m2)
147 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
148 (declare (type monom m1 m2))
149 (every #'<= m1 m2))
150
151(defun monom-divides-monom-lcm-p (m1 m2 m3)
152 "Returns T if monomial M1 divides MONOM-LCM(M2,M3), NIL otherwise."
153 (declare (type monom m1 m2 m3))
154 (every #'(lambda (x y z) (<= x (max y z)))
155 m1 m2 m3))
156
157(defun monom-lcm-divides-monom-lcm-p (m1 m2 m3 m4)
158 "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
159 (declare (type monom m1 m2 m3 m4))
160 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
161 m1 m2 m3 m4))
162
163
164(defun monom-lcm-equal-monom-lcm-p (m1 m2 m3 m4)
165 "Returns T if monomial MONOM-LCM(M1,M2) equals MONOM-LCM(M3,M4), NIL otherwise."
166 (declare (type monom m1 m2 m3 m4))
167 (every #'(lambda (x y z w) (= (max x y) (max z w)))
168 m1 m2 m3 m4))
169
170
171(defun monom-divisible-by-p (m1 m2)
172 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
173 (declare (type monom m1 m2))
174 (every #'>= m1 m2))
175
176(defun monom-rel-prime-p (m1 m2)
177 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
178 (declare (type monom m1 m2))
179 (every #'(lambda (x y) (zerop (min x y))) m1 m2))
180
181(defun monom-equal-p (m1 m2)
182 "Returns T if two monomials M1 and M2 are equal."
183 (declare (type monom m1 m2))
184 (every #'= m1 m2))
185
186(defun monom-lcm (m1 m2 &aux (result (copy-seq m1)))
187 "Returns least common multiple of monomials M1 and M2."
188 (declare (type monom m1 m2 result))
189 (map-into result #'max m1 m2))
190
191(defun monom-gcd (m1 m2 &aux (result (copy-seq m1)))
192 "Returns greatest common divisor of monomials M1 and M2."
193 (declare (type monom m1 m2 result))
194 (map-into result #'min m1 m2))
195
196(defun monom-depends-p (m k)
197 "Return T if the monomial M depends on variable number K."
198 (declare (type monom m) (type fixnum k))
199 (plusp (monom-elt m k)))
200
201(defmacro monom-map (fun m &rest ml &aux (result `(copy-seq ,m)))
202 "Map function FUN of one argument over the powers of a monomial M.
203Fun should map a single FIXNUM argument to FIXNUM. Return a sequence
204of results."
205 `(map-into ,result ,fun ,m ,@ml))
206
207(defun monom-append (m1 m2 &aux (dim (+ (length m1) (length m2))))
208 (declare (type monom m1 m2) (fixnum dim))
209 (concatenate `(monom ,dim) m1 m2))
210
211(defun monom-contract (m k)
212 "Drop the first K variables in monomial M."
213 (declare (type monom m) (fixnum k))
214 (subseq m k))
215
216(defun make-monom-variable (nvars pos &optional (power 1)
217 &aux (m (make-monom :dimension nvars)))
218 "Construct a monomial in the polynomial ring
219RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
220which represents a single variable. It assumes number of variables
221NVARS and the variable is at position POS. Optionally, the variable
222may appear raised to power POWER. "
223 (declare (type fixnum nvars pos power) (type monom m))
224 (setf (monom-elt m pos) power)
225 m)
226
227(defun monom->list (m)
228 "A human-readable representation of a monomial M as a list of exponents."
229 (declare (type monom m))
230 (coerce m 'list))
Note: See TracBrowser for help on using the repository browser.