| [1201] | 1 | ;;; -*-  Mode: Lisp -*- | 
|---|
| [81] | 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 3 | ;;; | 
|---|
|  | 4 | ;;;  Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu> | 
|---|
|  | 5 | ;;; | 
|---|
|  | 6 | ;;;  This program is free software; you can redistribute it and/or modify | 
|---|
|  | 7 | ;;;  it under the terms of the GNU General Public License as published by | 
|---|
|  | 8 | ;;;  the Free Software Foundation; either version 2 of the License, or | 
|---|
|  | 9 | ;;;  (at your option) any later version. | 
|---|
|  | 10 | ;;; | 
|---|
|  | 11 | ;;;  This program is distributed in the hope that it will be useful, | 
|---|
|  | 12 | ;;;  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
|  | 13 | ;;;  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
|  | 14 | ;;;  GNU General Public License for more details. | 
|---|
|  | 15 | ;;; | 
|---|
|  | 16 | ;;;  You should have received a copy of the GNU General Public License | 
|---|
|  | 17 | ;;;  along with this program; if not, write to the Free Software | 
|---|
|  | 18 | ;;;  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|---|
|  | 19 | ;;; | 
|---|
|  | 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 21 |  | 
|---|
| [1610] | 22 | (defpackage "MONOM" | 
|---|
| [3827] | 23 | (:use :cl :utils :copy) | 
|---|
| [422] | 24 | (:export "MONOM" | 
|---|
| [3602] | 25 | "TERM" | 
|---|
| [423] | 26 | "EXPONENT" | 
|---|
| [2781] | 27 | "MONOM-DIMENSION" | 
|---|
|  | 28 | "MONOM-EXPONENTS" | 
|---|
| [3592] | 29 | "UNIVERSAL-EQUALP" | 
|---|
| [3442] | 30 | "MONOM-ELT" | 
|---|
| [3592] | 31 | "TOTAL-DEGREE" | 
|---|
|  | 32 | "SUGAR" | 
|---|
|  | 33 | "MULTIPLY-BY" | 
|---|
|  | 34 | "DIVIDE-BY" | 
|---|
| [3599] | 35 | "DIVIDE" | 
|---|
| [3592] | 36 | "MULTIPLY-2" | 
|---|
|  | 37 | "MULTIPLY" | 
|---|
|  | 38 | "DIVIDES-P" | 
|---|
|  | 39 | "DIVIDES-LCM-P" | 
|---|
|  | 40 | "LCM-DIVIDES-LCM-P" | 
|---|
|  | 41 | "LCM-EQUAL-LCM-P" | 
|---|
|  | 42 | "DIVISIBLE-BY-P" | 
|---|
|  | 43 | "REL-PRIME-P" | 
|---|
|  | 44 | "UNIVERSAL-LCM" | 
|---|
|  | 45 | "UNIVERSAL-GCD" | 
|---|
|  | 46 | "DEPENDS-P" | 
|---|
|  | 47 | "LEFT-TENSOR-PRODUCT-BY" | 
|---|
|  | 48 | "RIGHT-TENSOR-PRODUCT-BY" | 
|---|
|  | 49 | "LEFT-CONTRACT" | 
|---|
| [3442] | 50 | "MAKE-MONOM-VARIABLE" | 
|---|
| [3811] | 51 | "MAKE-MONOM-CONSTANT" | 
|---|
| [3812] | 52 | "MAKE-TERM-CONSTANT" | 
|---|
| [3610] | 53 | "->LIST" | 
|---|
| [4023] | 54 | "->SEXP" | 
|---|
| [3472] | 55 | "LEX>" | 
|---|
|  | 56 | "GRLEX>" | 
|---|
|  | 57 | "REVLEX>" | 
|---|
|  | 58 | "GREVLEX>" | 
|---|
|  | 59 | "INVLEX>" | 
|---|
|  | 60 | "REVERSE-MONOMIAL-ORDER" | 
|---|
| [3606] | 61 | "MAKE-ELIMINATION-ORDER-FACTORY" | 
|---|
| [3644] | 62 | "TERM-COEFF" | 
|---|
| [3616] | 63 | "UNARY-MINUS" | 
|---|
| [4031] | 64 | "UNARY-INVERSE" | 
|---|
| [3616] | 65 | "UNIVERSAL-ZEROP") | 
|---|
| [2524] | 66 | (:documentation | 
|---|
| [3477] | 67 | "This package implements basic operations on monomials, including | 
|---|
|  | 68 | various monomial orders. | 
|---|
|  | 69 |  | 
|---|
| [2524] | 70 | DATA STRUCTURES: Conceptually, monomials can be represented as lists: | 
|---|
| [81] | 71 |  | 
|---|
| [2524] | 72 | monom: (n1 n2 ... nk) where ni are non-negative integers | 
|---|
|  | 73 |  | 
|---|
|  | 74 | However, lists may be implemented as other sequence types, so the | 
|---|
|  | 75 | flexibility to change the representation should be maintained in the | 
|---|
|  | 76 | code to use general operations on sequences whenever possible. The | 
|---|
|  | 77 | optimization for the actual representation should be left to | 
|---|
|  | 78 | declarations and the compiler. | 
|---|
|  | 79 |  | 
|---|
|  | 80 | EXAMPLES: Suppose that variables are x and y. Then | 
|---|
|  | 81 |  | 
|---|
|  | 82 | Monom x*y^2 ---> (1 2) ")) | 
|---|
|  | 83 |  | 
|---|
| [1610] | 84 | (in-package :monom) | 
|---|
| [48] | 85 |  | 
|---|
| [3802] | 86 | (proclaim '(optimize (speed 0) (space 0) (safety 3) (debug 0))) | 
|---|
| [1923] | 87 |  | 
|---|
| [48] | 88 | (deftype exponent () | 
|---|
|  | 89 | "Type of exponent in a monomial." | 
|---|
|  | 90 | 'fixnum) | 
|---|
|  | 91 |  | 
|---|
| [2022] | 92 | (defclass monom () | 
|---|
| [3312] | 93 | ((exponents :initarg :exponents :accessor monom-exponents | 
|---|
| [3054] | 94 | :documentation "The powers of the variables.")) | 
|---|
| [3289] | 95 | ;; default-initargs are not needed, they are handled by SHARED-INITIALIZE | 
|---|
|  | 96 | ;;(:default-initargs :dimension 'foo :exponents 'bar :exponent 'baz) | 
|---|
| [2779] | 97 | (:documentation | 
|---|
|  | 98 | "Implements a monomial, i.e. a product of powers | 
|---|
|  | 99 | of variables, like X*Y^2.")) | 
|---|
| [880] | 100 |  | 
|---|
| [2245] | 101 | (defmethod print-object ((self monom) stream) | 
|---|
| [3196] | 102 | (print-unreadable-object (self stream :type t :identity t) | 
|---|
| [3313] | 103 | (with-accessors ((exponents monom-exponents)) | 
|---|
| [3216] | 104 | self | 
|---|
| [3313] | 105 | (format stream "EXPONENTS=~A" | 
|---|
|  | 106 | exponents)))) | 
|---|
| [2027] | 107 |  | 
|---|
| [3299] | 108 | (defmethod initialize-instance :after ((self monom) | 
|---|
| [3297] | 109 | &key | 
|---|
|  | 110 | (dimension 0 dimension-supplied-p) | 
|---|
|  | 111 | (exponents nil exponents-supplied-p) | 
|---|
| [3318] | 112 | (exponent  0) | 
|---|
| [3297] | 113 | &allow-other-keys | 
|---|
| [2390] | 114 | ) | 
|---|
| [3329] | 115 | "The following INITIALIZE-INSTANCE method allows instance initialization | 
|---|
|  | 116 | of a MONOM in a style similar to MAKE-ARRAY, e.g.: | 
|---|
| [3328] | 117 |  | 
|---|
| [3788] | 118 | (MAKE-INSTANCE 'MONOM :EXPONENTS '(1 2 3))      --> #<MONOM EXPONENTS=#(1 2 3)> | 
|---|
|  | 119 | (MAKE-INSTANCE 'MONOM :DIMENSION 3)             --> #<MONOM EXPONENTS=#(0 0 0)> | 
|---|
|  | 120 | (MAKE-INSTANCE 'MONOM :DIMENSION 3 :EXPONENT 7) --> #<MONOM EXPONENTS=#(7 7 7)> | 
|---|
| [3329] | 121 |  | 
|---|
|  | 122 | If both DIMENSION and EXPONENTS are supplied, they must be compatible, | 
|---|
|  | 123 | i.e. the length of EXPONENTS must be equal DIMENSION. If EXPONENTS | 
|---|
|  | 124 | is not supplied, a monom with repeated value EXPONENT is created. | 
|---|
|  | 125 | By default EXPONENT is 0, which results in a constant monomial. | 
|---|
| [3328] | 126 | " | 
|---|
| [3315] | 127 | (cond | 
|---|
|  | 128 | (exponents-supplied-p | 
|---|
| [3327] | 129 | (when (and dimension-supplied-p | 
|---|
|  | 130 | (/= dimension (length exponents))) | 
|---|
|  | 131 | (error "EXPONENTS (~A) must have supplied length DIMENSION (~A)" | 
|---|
|  | 132 | exponents dimension)) | 
|---|
| [3315] | 133 | (let ((dim (length exponents))) | 
|---|
|  | 134 | (setf (slot-value self 'exponents) (make-array dim :initial-contents exponents)))) | 
|---|
| [3321] | 135 | (dimension-supplied-p | 
|---|
| [3315] | 136 | ;; when all exponents are to be identical | 
|---|
| [3321] | 137 | (setf (slot-value self 'exponents) (make-array (list dimension) | 
|---|
|  | 138 | :initial-element exponent | 
|---|
|  | 139 | :element-type 'exponent))) | 
|---|
|  | 140 | (t | 
|---|
|  | 141 | (error "Initarg DIMENSION or EXPONENTS must be supplied.")))) | 
|---|
| [3293] | 142 |  | 
|---|
| [3807] | 143 | (defgeneric monom-dimension (self) | 
|---|
|  | 144 | (:method ((self monom)) | 
|---|
|  | 145 | (length (monom-exponents self)))) | 
|---|
| [3317] | 146 |  | 
|---|
| [3541] | 147 | (defgeneric universal-equalp (object1 object2) | 
|---|
|  | 148 | (:documentation "Returns T iff OBJECT1 and OBJECT2 are equal.") | 
|---|
| [3650] | 149 | (:method ((object1 cons) (object2 cons)) (every #'universal-equalp object1 object2)) | 
|---|
| [3611] | 150 | (:method ((object1 number) (object2 number)) (= object1 object2)) | 
|---|
| [3443] | 151 | (:method ((m1 monom) (m2 monom)) | 
|---|
| [3541] | 152 | "Returns T iff monomials M1 and M2 have identical EXPONENTS." | 
|---|
| [3535] | 153 | (equalp (monom-exponents m1) (monom-exponents m2)))) | 
|---|
| [2547] | 154 |  | 
|---|
| [3443] | 155 | (defgeneric monom-elt (m index) | 
|---|
| [3574] | 156 | (:documentation "Return the power in the monomial M of variable number INDEX.") | 
|---|
| [3443] | 157 | (:method ((m monom) index) | 
|---|
| [3550] | 158 | "Return the power in the monomial M of variable number INDEX." | 
|---|
| [3443] | 159 | (with-slots (exponents) | 
|---|
|  | 160 | m | 
|---|
|  | 161 | (elt exponents index)))) | 
|---|
| [48] | 162 |  | 
|---|
| [3443] | 163 | (defgeneric (setf monom-elt) (new-value m index) | 
|---|
| [3550] | 164 | (:documentation "Set the power in the monomial M of variable number INDEX.") | 
|---|
| [3443] | 165 | (:method (new-value (m monom) index) | 
|---|
|  | 166 | (with-slots (exponents) | 
|---|
|  | 167 | m | 
|---|
| [3453] | 168 | (setf (elt exponents index) new-value)))) | 
|---|
| [2023] | 169 |  | 
|---|
| [3551] | 170 | (defgeneric total-degree (m &optional start end) | 
|---|
|  | 171 | (:documentation "Return the total degree of a monomoal M. Optinally, a range | 
|---|
| [3449] | 172 | of variables may be specified with arguments START and END.") | 
|---|
|  | 173 | (:method ((m monom) &optional (start 0) (end (monom-dimension m))) | 
|---|
|  | 174 | (declare (type fixnum start end)) | 
|---|
|  | 175 | (with-slots (exponents) | 
|---|
|  | 176 | m | 
|---|
|  | 177 | (reduce #'+ exponents :start start :end end)))) | 
|---|
| [48] | 178 |  | 
|---|
| [3552] | 179 | (defgeneric sugar (m &optional start end) | 
|---|
| [3446] | 180 | (:documentation "Return the sugar of a monomial M. Optinally, a range | 
|---|
|  | 181 | of variables may be specified with arguments START and END.") | 
|---|
|  | 182 | (:method ((m monom)  &optional (start 0) (end (monom-dimension m))) | 
|---|
|  | 183 | (declare (type fixnum start end)) | 
|---|
| [3552] | 184 | (total-degree m start end))) | 
|---|
| [48] | 185 |  | 
|---|
| [3553] | 186 | (defgeneric multiply-by (self other) | 
|---|
| [3549] | 187 | (:documentation "Multiply SELF by OTHER, return SELF.") | 
|---|
| [3612] | 188 | (:method ((self number) (other number)) (* self other)) | 
|---|
| [3446] | 189 | (:method ((self monom) (other monom)) | 
|---|
|  | 190 | (with-slots ((exponents1 exponents)) | 
|---|
|  | 191 | self | 
|---|
|  | 192 | (with-slots ((exponents2 exponents)) | 
|---|
|  | 193 | other | 
|---|
|  | 194 | (unless (= (length exponents1) (length exponents2)) | 
|---|
|  | 195 | (error "Incompatible dimensions")) | 
|---|
|  | 196 | (map-into exponents1 #'+ exponents1 exponents2))) | 
|---|
| [3846] | 197 | self)) | 
|---|
| [2069] | 198 |  | 
|---|
| [3553] | 199 | (defgeneric divide-by (self other) | 
|---|
| [3544] | 200 | (:documentation "Divide SELF by OTHER, return SELF.") | 
|---|
| [3613] | 201 | (:method ((self number) (other number)) (/ self other)) | 
|---|
| [3446] | 202 | (:method ((self monom) (other monom)) | 
|---|
|  | 203 | (with-slots ((exponents1 exponents)) | 
|---|
|  | 204 | self | 
|---|
|  | 205 | (with-slots ((exponents2 exponents)) | 
|---|
|  | 206 | other | 
|---|
|  | 207 | (unless (= (length exponents1) (length exponents2)) | 
|---|
|  | 208 | (error "divide-by: Incompatible dimensions.")) | 
|---|
|  | 209 | (unless (every #'>= exponents1 exponents2) | 
|---|
|  | 210 | (error "divide-by: Negative power would result.")) | 
|---|
|  | 211 | (map-into exponents1 #'- exponents1 exponents2))) | 
|---|
| [3845] | 212 | self)) | 
|---|
| [2818] | 213 |  | 
|---|
| [3448] | 214 | (defmethod copy-instance :around ((object monom)  &rest initargs &key &allow-other-keys) | 
|---|
|  | 215 | "An :AROUND method of COPY-INSTANCE. It replaces | 
|---|
|  | 216 | exponents with a fresh copy of the sequence." | 
|---|
| [3446] | 217 | (declare (ignore object initargs)) | 
|---|
|  | 218 | (let ((copy (call-next-method))) | 
|---|
|  | 219 | (setf (monom-exponents copy) (copy-seq (monom-exponents copy))) | 
|---|
| [3453] | 220 | copy)) | 
|---|
| [2950] | 221 |  | 
|---|
| [3560] | 222 | (defun multiply-2 (object1 object2) | 
|---|
| [3559] | 223 | "Multiply OBJECT1 by OBJECT2" | 
|---|
|  | 224 | (multiply-by (copy-instance object1) (copy-instance object2))) | 
|---|
| [2816] | 225 |  | 
|---|
| [3557] | 226 | (defun multiply (&rest factors) | 
|---|
|  | 227 | "Non-destructively multiply list FACTORS." | 
|---|
| [3800] | 228 | (cond ((endp factors) 1) | 
|---|
|  | 229 | ((endp (rest factors)) (first factors)) | 
|---|
|  | 230 | (t (reduce #'multiply-2 factors :initial-value 1)))) | 
|---|
| [3554] | 231 |  | 
|---|
| [4032] | 232 | (defgeneric unary-inverse (self) | 
|---|
|  | 233 | (:documentation "Returns the unary inverse of SELF.") | 
|---|
| [4033] | 234 | (:method ((self number)) (/ self)) | 
|---|
|  | 235 | (:method :before ((self monom)) | 
|---|
|  | 236 | (assert (zerop (total-degree self)))) | 
|---|
|  | 237 | (:method ((self monom)) self)) | 
|---|
| [4032] | 238 |  | 
|---|
| [3849] | 239 | (defun divide (numerator &rest denominators) | 
|---|
|  | 240 | "Non-destructively divide object NUMERATOR by product of DENOMINATORS." | 
|---|
|  | 241 | (cond ((endp denominators) | 
|---|
| [4030] | 242 | (unary-inverse numerator)) | 
|---|
| [3850] | 243 | (t (divide-by (copy-instance numerator) (apply #'multiply denominators))))) | 
|---|
| [48] | 244 |  | 
|---|
| [3591] | 245 | (defgeneric divides-p (object1 object2) | 
|---|
|  | 246 | (:documentation "Returns T if OBJECT1 divides OBJECT2.") | 
|---|
|  | 247 | (:method ((m1 monom) (m2 monom)) | 
|---|
|  | 248 | "Returns T if monomial M1 divides monomial M2, NIL otherwise." | 
|---|
|  | 249 | (with-slots ((exponents1 exponents)) | 
|---|
|  | 250 | m1 | 
|---|
|  | 251 | (with-slots ((exponents2 exponents)) | 
|---|
|  | 252 | m2 | 
|---|
|  | 253 | (every #'<= exponents1 exponents2))))) | 
|---|
| [48] | 254 |  | 
|---|
| [3585] | 255 | (defgeneric divides-lcm-p (object1 object2 object3) | 
|---|
| [3594] | 256 | (:documentation "Returns T if OBJECT1 divides LCM(OBJECT2,OBJECT3), NIL otherwise.") | 
|---|
| [3585] | 257 | (:method ((m1 monom) (m2 monom) (m3 monom)) | 
|---|
|  | 258 | "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise." | 
|---|
| [3596] | 259 | (with-slots ((exponents1 exponents)) | 
|---|
|  | 260 | m1 | 
|---|
|  | 261 | (with-slots ((exponents2 exponents)) | 
|---|
|  | 262 | m2 | 
|---|
|  | 263 | (with-slots ((exponents3 exponents)) | 
|---|
|  | 264 | m3 | 
|---|
|  | 265 | (every #'(lambda (x y z) (<= x (max y z))) | 
|---|
|  | 266 | exponents1 exponents2 exponents3)))))) | 
|---|
| [48] | 267 |  | 
|---|
| [3588] | 268 | (defgeneric lcm-divides-lcm-p (object1 object2 object3 object4) | 
|---|
|  | 269 | (:method ((m1 monom) (m2 monom) (m3 monom) (m4 monom)) | 
|---|
|  | 270 | "Returns T if monomial LCM(M1,M2) divides LCM(M3,M4), NIL otherwise." | 
|---|
|  | 271 | (with-slots ((exponents1 exponents)) | 
|---|
|  | 272 | m1 | 
|---|
|  | 273 | (with-slots ((exponents2 exponents)) | 
|---|
|  | 274 | m2 | 
|---|
|  | 275 | (with-slots ((exponents3 exponents)) | 
|---|
|  | 276 | m3 | 
|---|
|  | 277 | (with-slots ((exponents4 exponents)) | 
|---|
|  | 278 | m4 | 
|---|
|  | 279 | (every #'(lambda (x y z w) (<= (max x y) (max z w))) | 
|---|
| [3590] | 280 | exponents1 exponents2 exponents3 exponents4))))))) | 
|---|
| [869] | 281 |  | 
|---|
| [3589] | 282 | (defgeneric monom-lcm-equal-lcm-p (object1 object2 object3 object4) | 
|---|
|  | 283 | (:method ((m1 monom) (m2 monom) (m3 monom) (m4 monom)) | 
|---|
|  | 284 | "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise." | 
|---|
|  | 285 | (with-slots ((exponents1 exponents)) | 
|---|
|  | 286 | m1 | 
|---|
|  | 287 | (with-slots ((exponents2 exponents)) | 
|---|
|  | 288 | m2 | 
|---|
|  | 289 | (with-slots ((exponents3 exponents)) | 
|---|
|  | 290 | m3 | 
|---|
|  | 291 | (with-slots ((exponents4 exponents)) | 
|---|
|  | 292 | m4 | 
|---|
|  | 293 | (every | 
|---|
|  | 294 | #'(lambda (x y z w) (= (max x y) (max z w))) | 
|---|
|  | 295 | exponents1 exponents2 exponents3 exponents4))))))) | 
|---|
| [48] | 296 |  | 
|---|
| [3563] | 297 | (defgeneric divisible-by-p (object1 object2) | 
|---|
|  | 298 | (:documentation "Return T if OBJECT1 is divisible by OBJECT2.") | 
|---|
|  | 299 | (:method ((m1 monom) (m2 monom)) | 
|---|
|  | 300 | "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise." | 
|---|
|  | 301 | (with-slots ((exponents1 exponents)) | 
|---|
|  | 302 | m1 | 
|---|
|  | 303 | (with-slots ((exponents2 exponents)) | 
|---|
|  | 304 | m2 | 
|---|
|  | 305 | (every #'>= exponents1 exponents2))))) | 
|---|
| [2078] | 306 |  | 
|---|
| [3565] | 307 | (defgeneric rel-prime-p (object1 object2) | 
|---|
| [3575] | 308 | (:documentation "Returns T if objects OBJECT1 and OBJECT2 are relatively prime.") | 
|---|
| [3563] | 309 | (:method ((m1 monom) (m2 monom)) | 
|---|
|  | 310 | "Returns T if two monomials M1 and M2 are relatively prime (disjoint)." | 
|---|
|  | 311 | (with-slots ((exponents1 exponents)) | 
|---|
|  | 312 | m1 | 
|---|
|  | 313 | (with-slots ((exponents2 exponents)) | 
|---|
|  | 314 | m2 | 
|---|
|  | 315 | (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))) | 
|---|
| [48] | 316 |  | 
|---|
| [3595] | 317 | (defgeneric universal-lcm (object1 object2) | 
|---|
| [3566] | 318 | (:documentation "Returns the multiple of objects OBJECT1 and OBJECT2.") | 
|---|
|  | 319 | (:method ((m1 monom) (m2 monom)) | 
|---|
|  | 320 | "Returns least common multiple of monomials M1 and M2." | 
|---|
|  | 321 | (with-slots ((exponents1 exponents)) | 
|---|
|  | 322 | m1 | 
|---|
|  | 323 | (with-slots ((exponents2 exponents)) | 
|---|
|  | 324 | m2 | 
|---|
|  | 325 | (let* ((exponents (copy-seq exponents1))) | 
|---|
|  | 326 | (map-into exponents #'max exponents1 exponents2) | 
|---|
|  | 327 | (make-instance 'monom :exponents exponents)))))) | 
|---|
| [48] | 328 |  | 
|---|
| [2080] | 329 |  | 
|---|
| [3567] | 330 | (defgeneric universal-gcd (object1 object2) | 
|---|
|  | 331 | (:documentation "Returns GCD of objects OBJECT1 and OBJECT2") | 
|---|
| [3681] | 332 | (:method ((object1 number) (object2 number)) (gcd object1 object2)) | 
|---|
| [3567] | 333 | (:method ((m1 monom) (m2 monom)) | 
|---|
| [3568] | 334 | "Returns greatest common divisor of monomials M1 and M2." | 
|---|
|  | 335 | (with-slots ((exponents1 exponents)) | 
|---|
|  | 336 | m1 | 
|---|
|  | 337 | (with-slots ((exponents2 exponents)) | 
|---|
|  | 338 | m2 | 
|---|
|  | 339 | (let* ((exponents (copy-seq exponents1))) | 
|---|
|  | 340 | (map-into exponents #'min exponents1 exponents2) | 
|---|
|  | 341 | (make-instance 'monom :exponents exponents)))))) | 
|---|
| [48] | 342 |  | 
|---|
| [3569] | 343 | (defgeneric depends-p (object k) | 
|---|
|  | 344 | (:documentation "Returns T iff object OBJECT depends on variable K.") | 
|---|
|  | 345 | (:method ((m monom) k) | 
|---|
|  | 346 | "Return T if the monomial M depends on variable number K." | 
|---|
|  | 347 | (declare (type fixnum k)) | 
|---|
|  | 348 | (with-slots (exponents) | 
|---|
|  | 349 | m | 
|---|
|  | 350 | (plusp (elt exponents k))))) | 
|---|
| [48] | 351 |  | 
|---|
| [3570] | 352 | (defgeneric left-tensor-product-by (self other) | 
|---|
|  | 353 | (:documentation "Returns a tensor product SELF by OTHER, stored into | 
|---|
|  | 354 | SELF. Return SELF.") | 
|---|
|  | 355 | (:method ((self monom) (other monom)) | 
|---|
|  | 356 | (with-slots ((exponents1 exponents)) | 
|---|
|  | 357 | self | 
|---|
|  | 358 | (with-slots ((exponents2 exponents)) | 
|---|
|  | 359 | other | 
|---|
|  | 360 | (setf exponents1 (concatenate 'vector exponents2 exponents1)))) | 
|---|
|  | 361 | self)) | 
|---|
| [48] | 362 |  | 
|---|
| [3570] | 363 | (defgeneric right-tensor-product-by (self other) | 
|---|
|  | 364 | (:documentation "Returns a tensor product of OTHER by SELF, stored | 
|---|
|  | 365 | into SELF. Returns SELF.") | 
|---|
|  | 366 | (:method ((self monom) (other monom)) | 
|---|
|  | 367 | (with-slots ((exponents1 exponents)) | 
|---|
|  | 368 | self | 
|---|
|  | 369 | (with-slots ((exponents2 exponents)) | 
|---|
|  | 370 | other | 
|---|
|  | 371 | (setf exponents1 (concatenate 'vector exponents1 exponents2)))) | 
|---|
|  | 372 | self)) | 
|---|
| [3026] | 373 |  | 
|---|
| [3571] | 374 | (defgeneric left-contract (self k) | 
|---|
|  | 375 | (:documentation "Drop the first K variables in object SELF.") | 
|---|
|  | 376 | (:method ((self monom) k) | 
|---|
|  | 377 | "Drop the first K variables in monomial M." | 
|---|
|  | 378 | (declare (fixnum k)) | 
|---|
|  | 379 | (with-slots (exponents) | 
|---|
|  | 380 | self | 
|---|
|  | 381 | (setf exponents (subseq exponents k))) | 
|---|
|  | 382 | self)) | 
|---|
| [886] | 383 |  | 
|---|
|  | 384 | (defun make-monom-variable (nvars pos &optional (power 1) | 
|---|
| [2218] | 385 | &aux (m (make-instance 'monom :dimension nvars))) | 
|---|
| [886] | 386 | "Construct a monomial in the polynomial ring | 
|---|
|  | 387 | RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING | 
|---|
|  | 388 | which represents a single variable. It assumes number of variables | 
|---|
|  | 389 | NVARS and the variable is at position POS. Optionally, the variable | 
|---|
|  | 390 | may appear raised to power POWER. " | 
|---|
| [1924] | 391 | (declare (type fixnum nvars pos power) (type monom m)) | 
|---|
| [2089] | 392 | (with-slots (exponents) | 
|---|
|  | 393 | m | 
|---|
| [2154] | 394 | (setf (elt exponents pos) power) | 
|---|
| [2089] | 395 | m)) | 
|---|
| [1151] | 396 |  | 
|---|
| [3811] | 397 | (defun make-monom-constant (dimension) | 
|---|
|  | 398 | (make-instance 'monom :dimension dimension)) | 
|---|
|  | 399 |  | 
|---|
| [3474] | 400 | ;; pure lexicographic | 
|---|
| [3472] | 401 | (defgeneric lex> (p q &optional start end) | 
|---|
|  | 402 | (:documentation "Return T if P>Q with respect to lexicographic | 
|---|
|  | 403 | order, otherwise NIL.  The second returned value is T if P=Q, | 
|---|
|  | 404 | otherwise it is NIL.") | 
|---|
| [3483] | 405 | (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension  p))) | 
|---|
| [3472] | 406 | (declare (type fixnum start end)) | 
|---|
|  | 407 | (do ((i start (1+ i))) | 
|---|
|  | 408 | ((>= i end) (values nil t)) | 
|---|
|  | 409 | (cond | 
|---|
| [3483] | 410 | ((> (monom-elt p i) (monom-elt q i)) | 
|---|
| [3472] | 411 | (return-from lex> (values t nil))) | 
|---|
| [3483] | 412 | ((< (monom-elt p i) (monom-elt q i)) | 
|---|
| [3472] | 413 | (return-from lex> (values nil nil))))))) | 
|---|
|  | 414 |  | 
|---|
| [3475] | 415 | ;; total degree order, ties broken by lexicographic | 
|---|
| [3472] | 416 | (defgeneric grlex> (p q &optional start end) | 
|---|
|  | 417 | (:documentation "Return T if P>Q with respect to graded | 
|---|
|  | 418 | lexicographic order, otherwise NIL.  The second returned value is T if | 
|---|
|  | 419 | P=Q, otherwise it is NIL.") | 
|---|
| [3483] | 420 | (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension  p))) | 
|---|
| [3472] | 421 | (declare (type monom p q) (type fixnum start end)) | 
|---|
| [3583] | 422 | (let ((d1 (total-degree p start end)) | 
|---|
|  | 423 | (d2 (total-degree q start end))) | 
|---|
| [3472] | 424 | (declare (type fixnum d1 d2)) | 
|---|
|  | 425 | (cond | 
|---|
|  | 426 | ((> d1 d2) (values t nil)) | 
|---|
|  | 427 | ((< d1 d2) (values nil nil)) | 
|---|
|  | 428 | (t | 
|---|
|  | 429 | (lex> p q start end)))))) | 
|---|
|  | 430 |  | 
|---|
|  | 431 | ;; reverse lexicographic | 
|---|
|  | 432 | (defgeneric revlex> (p q &optional start end) | 
|---|
|  | 433 | (:documentation "Return T if P>Q with respect to reverse | 
|---|
|  | 434 | lexicographic order, NIL otherwise.  The second returned value is T if | 
|---|
|  | 435 | P=Q, otherwise it is NIL. This is not and admissible monomial order | 
|---|
|  | 436 | because some sets do not have a minimal element. This order is useful | 
|---|
|  | 437 | in constructing other orders.") | 
|---|
| [3483] | 438 | (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension  p))) | 
|---|
| [3472] | 439 | (declare (type fixnum start end)) | 
|---|
|  | 440 | (do ((i (1- end) (1- i))) | 
|---|
|  | 441 | ((< i start) (values nil t)) | 
|---|
|  | 442 | (declare (type fixnum i)) | 
|---|
|  | 443 | (cond | 
|---|
| [3483] | 444 | ((< (monom-elt p i) (monom-elt q i)) | 
|---|
| [3472] | 445 | (return-from revlex> (values t nil))) | 
|---|
| [3483] | 446 | ((> (monom-elt p i) (monom-elt q i)) | 
|---|
| [3472] | 447 | (return-from revlex> (values nil nil))))))) | 
|---|
|  | 448 |  | 
|---|
|  | 449 |  | 
|---|
|  | 450 | ;; total degree, ties broken by reverse lexicographic | 
|---|
|  | 451 | (defgeneric grevlex> (p q &optional start end) | 
|---|
|  | 452 | (:documentation "Return T if P>Q with respect to graded reverse | 
|---|
|  | 453 | lexicographic order, NIL otherwise. The second returned value is T if | 
|---|
|  | 454 | P=Q, otherwise it is NIL.") | 
|---|
| [3483] | 455 | (:method  ((p monom) (q monom) &optional (start 0) (end (monom-dimension  p))) | 
|---|
| [3472] | 456 | (declare (type fixnum start end)) | 
|---|
| [3584] | 457 | (let ((d1 (total-degree p start end)) | 
|---|
|  | 458 | (d2 (total-degree q start end))) | 
|---|
| [3472] | 459 | (declare (type fixnum d1 d2)) | 
|---|
|  | 460 | (cond | 
|---|
|  | 461 | ((> d1 d2) (values t nil)) | 
|---|
|  | 462 | ((< d1 d2) (values nil nil)) | 
|---|
|  | 463 | (t | 
|---|
|  | 464 | (revlex> p q start end)))))) | 
|---|
|  | 465 |  | 
|---|
|  | 466 | (defgeneric invlex> (p q &optional start end) | 
|---|
|  | 467 | (:documentation "Return T if P>Q with respect to inverse | 
|---|
|  | 468 | lexicographic order, NIL otherwise The second returned value is T if | 
|---|
|  | 469 | P=Q, otherwise it is NIL.") | 
|---|
| [3483] | 470 | (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension  p))) | 
|---|
| [3472] | 471 | (declare  (type fixnum start end)) | 
|---|
|  | 472 | (do ((i (1- end) (1- i))) | 
|---|
|  | 473 | ((< i start) (values nil t)) | 
|---|
|  | 474 | (declare (type fixnum i)) | 
|---|
|  | 475 | (cond | 
|---|
| [3483] | 476 | ((> (monom-elt p i) (monom-elt q i)) | 
|---|
| [3472] | 477 | (return-from invlex> (values t nil))) | 
|---|
| [3483] | 478 | ((< (monom-elt p i) (monom-elt q i)) | 
|---|
| [3472] | 479 | (return-from invlex> (values nil nil))))))) | 
|---|
|  | 480 |  | 
|---|
|  | 481 | (defun reverse-monomial-order (order) | 
|---|
|  | 482 | "Create the inverse monomial order to the given monomial order ORDER." | 
|---|
| [3483] | 483 | #'(lambda (p q &optional (start 0) (end (monom-dimension q))) | 
|---|
| [3472] | 484 | (declare (type monom p q) (type fixnum start end)) | 
|---|
|  | 485 | (funcall order q p start end))) | 
|---|
|  | 486 |  | 
|---|
|  | 487 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 488 | ;; | 
|---|
|  | 489 | ;; Order making functions | 
|---|
|  | 490 | ;; | 
|---|
|  | 491 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 492 |  | 
|---|
|  | 493 | ;; This returns a closure with the same signature | 
|---|
|  | 494 | ;; as all orders such as #'LEX>. | 
|---|
| [3487] | 495 | (defun make-elimination-order-factory-1 (&optional (secondary-elimination-order #'lex>)) | 
|---|
| [3472] | 496 | "It constructs an elimination order used for the 1-st elimination ideal, | 
|---|
|  | 497 | i.e. for eliminating the first variable. Thus, the order compares the degrees of the | 
|---|
|  | 498 | first variable in P and Q first, with ties broken by SECONDARY-ELIMINATION-ORDER." | 
|---|
| [3483] | 499 | #'(lambda (p q &optional (start 0) (end (monom-dimension p))) | 
|---|
| [3472] | 500 | (declare (type monom p q) (type fixnum start end)) | 
|---|
|  | 501 | (cond | 
|---|
| [3483] | 502 | ((> (monom-elt p start) (monom-elt q start)) | 
|---|
| [3472] | 503 | (values t nil)) | 
|---|
| [3483] | 504 | ((< (monom-elt p start) (monom-elt q start)) | 
|---|
| [3472] | 505 | (values nil nil)) | 
|---|
|  | 506 | (t | 
|---|
|  | 507 | (funcall secondary-elimination-order p q (1+ start) end))))) | 
|---|
|  | 508 |  | 
|---|
|  | 509 | ;; This returns a closure which is called with an integer argument. | 
|---|
|  | 510 | ;; The result is *another closure* with the same signature as all | 
|---|
|  | 511 | ;; orders such as #'LEX>. | 
|---|
| [3486] | 512 | (defun make-elimination-order-factory (&optional | 
|---|
| [3472] | 513 | (primary-elimination-order #'lex>) | 
|---|
|  | 514 | (secondary-elimination-order #'lex>)) | 
|---|
|  | 515 | "Return a function with a single integer argument K. This should be | 
|---|
|  | 516 | the number of initial K variables X[0],X[1],...,X[K-1], which precede | 
|---|
|  | 517 | remaining variables.  The call to the closure creates a predicate | 
|---|
|  | 518 | which compares monomials according to the K-th elimination order. The | 
|---|
|  | 519 | monomial orders PRIMARY-ELIMINATION-ORDER and | 
|---|
|  | 520 | SECONDARY-ELIMINATION-ORDER are used to compare the first K and the | 
|---|
|  | 521 | remaining variables, respectively, with ties broken by lexicographical | 
|---|
|  | 522 | order. That is, if PRIMARY-ELIMINATION-ORDER yields (VALUES NIL T), | 
|---|
|  | 523 | which indicates that the first K variables appear with identical | 
|---|
|  | 524 | powers, then the result is that of a call to | 
|---|
|  | 525 | SECONDARY-ELIMINATION-ORDER applied to the remaining variables | 
|---|
|  | 526 | X[K],X[K+1],..." | 
|---|
|  | 527 | #'(lambda (k) | 
|---|
|  | 528 | (cond | 
|---|
|  | 529 | ((<= k 0) | 
|---|
|  | 530 | (error "K must be at least 1")) | 
|---|
|  | 531 | ((= k 1) | 
|---|
| [3485] | 532 | (make-elimination-order-factory-1 secondary-elimination-order)) | 
|---|
| [3472] | 533 | (t | 
|---|
| [3483] | 534 | #'(lambda (p q &optional (start 0) (end (monom-dimension  p))) | 
|---|
| [3472] | 535 | (declare (type monom p q) (type fixnum start end)) | 
|---|
|  | 536 | (multiple-value-bind (primary equal) | 
|---|
|  | 537 | (funcall primary-elimination-order p q start k) | 
|---|
|  | 538 | (if equal | 
|---|
|  | 539 | (funcall secondary-elimination-order p q k end) | 
|---|
|  | 540 | (values primary nil)))))))) | 
|---|
|  | 541 |  | 
|---|
| [3531] | 542 | (defclass term (monom) | 
|---|
|  | 543 | ((coeff :initarg :coeff :accessor term-coeff)) | 
|---|
|  | 544 | (:default-initargs :coeff nil) | 
|---|
|  | 545 | (:documentation "Implements a term, i.e. a product of a scalar | 
|---|
|  | 546 | and powers of some variables, such as 5*X^2*Y^3.")) | 
|---|
|  | 547 |  | 
|---|
| [3875] | 548 | (defmethod update-instance-for-different-class :after ((old monom) (new term) &key (coeff 1)) | 
|---|
| [3794] | 549 | "Converts OLD of class MONOM to a NEW of class TERM, initializing coefficient to COEFF." | 
|---|
| [3792] | 550 | (reinitialize-instance new :coeff coeff)) | 
|---|
| [3785] | 551 |  | 
|---|
| [3876] | 552 | (defmethod update-instance-for-different-class :after ((old term) (new term) &key (coeff (term-coeff old))) | 
|---|
|  | 553 | "Converts OLD of class TERM to a NEW of class TERM, initializing coefficient to COEFF." | 
|---|
|  | 554 | (reinitialize-instance new :coeff coeff)) | 
|---|
| [3875] | 555 |  | 
|---|
| [3876] | 556 |  | 
|---|
| [3531] | 557 | (defmethod print-object ((self term) stream) | 
|---|
|  | 558 | (print-unreadable-object (self stream :type t :identity t) | 
|---|
|  | 559 | (with-accessors ((exponents monom-exponents) | 
|---|
| [3532] | 560 | (coeff term-coeff)) | 
|---|
| [3531] | 561 | self | 
|---|
|  | 562 | (format stream "EXPONENTS=~A COEFF=~A" | 
|---|
|  | 563 | exponents coeff)))) | 
|---|
|  | 564 |  | 
|---|
| [3844] | 565 | (defmethod multiply-by ((self number) (other term)) | 
|---|
|  | 566 | (reinitialize-instance other :coeff (multiply self (term-coeff other)))) | 
|---|
|  | 567 |  | 
|---|
| [3846] | 568 | (defmethod multiply-by ((self term) (other number)) | 
|---|
|  | 569 | (reinitialize-instance self :coeff (multiply (term-coeff self) other))) | 
|---|
|  | 570 |  | 
|---|
| [3845] | 571 | (defmethod divide-by ((self term) (other number)) | 
|---|
|  | 572 | (reinitialize-instance self :coeff (divide (term-coeff self) other))) | 
|---|
|  | 573 |  | 
|---|
| [3812] | 574 | (defun make-term-constant (dimension &optional (coeff 1)) | 
|---|
|  | 575 | (make-instance 'term :dimension dimension :coeff coeff)) | 
|---|
|  | 576 |  | 
|---|
| [3542] | 577 | (defmethod universal-equalp ((term1 term) (term2 term)) | 
|---|
|  | 578 | "Returns T if TERM1 and TERM2 are equal as MONOM, and coefficients | 
|---|
|  | 579 | are UNIVERSAL-EQUALP." | 
|---|
| [3540] | 580 | (and (call-next-method) | 
|---|
|  | 581 | (universal-equalp (term-coeff term1) (term-coeff term2)))) | 
|---|
| [3531] | 582 |  | 
|---|
| [3556] | 583 | (defmethod multiply-by :before ((self term) (other term)) | 
|---|
| [3531] | 584 | "Destructively multiply terms SELF and OTHER and store the result into SELF. | 
|---|
|  | 585 | It returns SELF." | 
|---|
| [3580] | 586 | (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other)))) | 
|---|
| [3531] | 587 |  | 
|---|
| [3581] | 588 | (defmethod left-tensor-product-by :before ((self term) (other term)) | 
|---|
| [3579] | 589 | (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other)))) | 
|---|
| [3531] | 590 |  | 
|---|
| [3581] | 591 | (defmethod right-tensor-product-by :before ((self term) (other term)) | 
|---|
| [3556] | 592 | (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other)))) | 
|---|
| [3531] | 593 |  | 
|---|
| [3556] | 594 | (defmethod divide-by :before ((self term) (other term)) | 
|---|
|  | 595 | (setf (term-coeff self) (divide-by (term-coeff self) (term-coeff other)))) | 
|---|
| [3531] | 596 |  | 
|---|
| [3582] | 597 | (defgeneric unary-minus (self) | 
|---|
| [3615] | 598 | (:documentation "Negate object SELF and return it.") | 
|---|
|  | 599 | (:method ((self number)) (- self)) | 
|---|
| [3582] | 600 | (:method ((self term)) | 
|---|
|  | 601 | (setf (term-coeff self) (unary-minus (term-coeff self))) | 
|---|
|  | 602 | self)) | 
|---|
| [3531] | 603 |  | 
|---|
| [3578] | 604 | (defgeneric universal-zerop (self) | 
|---|
| [3617] | 605 | (:documentation "Return T iff SELF is zero.") | 
|---|
| [3618] | 606 | (:method ((self number)) (zerop self)) | 
|---|
| [3578] | 607 | (:method ((self term)) | 
|---|
|  | 608 | (universal-zerop (term-coeff self)))) | 
|---|
| [3823] | 609 |  | 
|---|
|  | 610 | (defgeneric ->list (self) | 
|---|
|  | 611 | (:method ((self monom)) | 
|---|
|  | 612 | "A human-readable representation of a monomial SELF as a list of exponents." | 
|---|
|  | 613 | (coerce (monom-exponents self) 'list)) | 
|---|
|  | 614 | (:method ((self term)) | 
|---|
|  | 615 | "A human-readable representation of a term SELF as a cons of the list of exponents and the coefficient." | 
|---|
| [3824] | 616 | (cons (coerce (monom-exponents self) 'list) (term-coeff self)))) | 
|---|
| [3826] | 617 |  | 
|---|
| [4022] | 618 | (defgeneric ->sexp (self &optional vars) | 
|---|
| [3856] | 619 | (:documentation "Convert a symbolic polynomial SELF to infix form, using variables VARS. The default | 
|---|
|  | 620 | value of VARS is the corresponding slot value of SELF.") | 
|---|
| [4024] | 621 | (:method :before ((self monom) &optional vars) | 
|---|
| [4025] | 622 | "Check the length of variables VARS against the length of exponents in SELF." | 
|---|
| [4024] | 623 | (with-slots (exponents) | 
|---|
|  | 624 | self | 
|---|
|  | 625 | (assert (= (length vars) (length exponents)) | 
|---|
| [4026] | 626 | nil | 
|---|
| [4024] | 627 | "Variables ~A and exponents ~A must have the same length." vars exponents))) | 
|---|
| [3826] | 628 | (:method ((self monom) &optional vars) | 
|---|
| [3857] | 629 | "Convert a monomial SELF to infix form, using variable VARS to build the representation." | 
|---|
| [3828] | 630 | (with-slots (exponents) | 
|---|
|  | 631 | self | 
|---|
| [4010] | 632 | (let ((m (mapcan #'(lambda (var power) | 
|---|
|  | 633 | (cond ((= power 0) nil) | 
|---|
|  | 634 | ((= power 1) (list var)) | 
|---|
|  | 635 | (t (list `(expt ,var ,power))))) | 
|---|
|  | 636 | vars (coerce exponents 'list)))) | 
|---|
| [4024] | 637 | (cond ((endp m) 1) | 
|---|
|  | 638 | ((endp (cdr m)) (car m)) | 
|---|
| [4010] | 639 | (t | 
|---|
|  | 640 | (cons '* m)))))) | 
|---|
| [3828] | 641 | (:method ((self term) &optional vars) | 
|---|
| [3857] | 642 | "Convert a term SELF to infix form, using variable VARS to build the representation." | 
|---|
| [4009] | 643 | (declare (ignore vars)) | 
|---|
| [3828] | 644 | (with-slots (exponents coeff) | 
|---|
|  | 645 | self | 
|---|
| [4009] | 646 | (let ((m (call-next-method))) | 
|---|
| [4026] | 647 | (cond ((= coeff 1) m) | 
|---|
|  | 648 | ((eql (car m) '*) (list* '* coeff (cdr m))) | 
|---|
| [4010] | 649 | (t | 
|---|
|  | 650 | (list* '* coeff m))) | 
|---|
| [4009] | 651 | m)))) | 
|---|