close Warning:

source: branches/f4grobner/monom.lisp@ 3044

Last change on this file since 3044 was 3040, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 10.5 KB
RevLine 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "MONOM"
23 (:use :cl :ring)
24 (:export "MONOM"
25 "EXPONENT"
26 "MONOM-DIMENSION"
27 "MONOM-EXPONENTS"
28 "MAKE-MONOM-VARIABLE")
29 (:documentation
30 "This package implements basic operations on monomials.
31DATA STRUCTURES: Conceptually, monomials can be represented as lists:
32
33 monom: (n1 n2 ... nk) where ni are non-negative integers
34
35However, lists may be implemented as other sequence types, so the
36flexibility to change the representation should be maintained in the
37code to use general operations on sequences whenever possible. The
38optimization for the actual representation should be left to
39declarations and the compiler.
40
41EXAMPLES: Suppose that variables are x and y. Then
42
43 Monom x*y^2 ---> (1 2) "))
44
45(in-package :monom)
46
47(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
48
49(deftype exponent ()
50 "Type of exponent in a monomial."
51 'fixnum)
52
53(defclass monom ()
54 ((dimension :initarg :dimension :accessor monom-dimension)
55 (exponents :initarg :exponents :accessor monom-exponents))
56 (:default-initargs :dimension nil :exponents nil :exponent nil)
57 (:documentation
58 "Implements a monomial, i.e. a product of powers
59of variables, like X*Y^2."))
60
61(defmethod print-object ((self monom) stream)
62 (format stream "#<MONOM DIMENSION=~A EXPONENTS=~A>"
63 (monom-dimension self)
64 (monom-exponents self)))
65
66(defmethod shared-initialize :after ((self monom) slot-names
67 &key
68 dimension
69 exponents
70 exponent
71 &allow-other-keys
72 )
73 (if (eq slot-names t) (setf slot-names '(dimension exponents)))
74 (dolist (slot-name slot-names)
75 (case slot-name
76 (dimension
77 (cond (dimension
78 (setf (slot-value self 'dimension) dimension))
79 (exponents
80 (setf (slot-value self 'dimension) (length exponents)))
81 (t
82 (error "DIMENSION or EXPONENTS must not be NIL"))))
83 (exponents
84 (cond
85 ;; when exponents are supplied
86 (exponents
87 (let ((dim (length exponents)))
88 (when (and dimension (/= dimension dim))
89 (error "EXPONENTS must have length DIMENSION"))
90 (setf (slot-value self 'dimension) dim
91 (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
92 ;; when all exponents are to be identical
93 (t
94 (let ((dim (slot-value self 'dimension)))
95 (setf (slot-value self 'exponents)
96 (make-array (list dim) :initial-element (or exponent 0)
97 :element-type 'exponent)))))))))
98
99(defmethod r-equalp ((m1 monom) (m2 monom))
100 "Returns T iff monomials M1 and M2 have identical
101EXPONENTS."
102 (equalp (monom-exponents m1) (monom-exponents m2)))
103
104(defmethod r-coeff ((m monom))
105 "A MONOM can be treated as a special case of TERM,
106where the coefficient is 1."
107 1)
108
109(defmethod r-elt ((m monom) index)
110 "Return the power in the monomial M of variable number INDEX."
111 (with-slots (exponents)
112 m
113 (elt exponents index)))
114
115(defmethod (setf r-elt) (new-value (m monom) index)
116 "Return the power in the monomial M of variable number INDEX."
117 (with-slots (exponents)
118 m
119 (setf (elt exponents index) new-value)))
120
121(defmethod r-total-degree ((m monom) &optional (start 0) (end (monom-dimension m)))
122 "Return the todal degree of a monomoal M. Optinally, a range
123of variables may be specified with arguments START and END."
124 (declare (type fixnum start end))
125 (with-slots (exponents)
126 m
127 (reduce #'+ exponents :start start :end end)))
128
129
130(defmethod r-sugar ((m monom) &aux (start 0) (end (monom-dimension m)))
131 "Return the sugar of a monomial M. Optinally, a range
132of variables may be specified with arguments START and END."
133 (declare (type fixnum start end))
134 (r-total-degree m start end))
135
136(defmethod multiply-by ((self monom) (other monom))
137 (with-slots ((exponents1 exponents) (dimension1 dimension))
138 self
139 (with-slots ((exponents2 exponents) (dimension2 dimension))
140 other
141 (unless (= dimension1 dimension2)
142 (error "Incompatible dimensions: ~A and ~A.~%" dimension1 dimension2))
143 (map-into exponents1 #'+ exponents1 exponents2)))
144 self)
145
146(defmethod divide-by ((self monom) (other monom))
147 (with-slots ((exponents1 exponents) (dimension1 dimension))
148 self
149 (with-slots ((exponents2 exponents) (dimension2 dimension))
150 other
151 (unless (= dimension1 dimension2)
152 (error "Incompatible dimensions: ~A and ~A.~%" dimension1 dimension2))
153 (map-into exponents1 #'- exponents1 exponents2)))
154 self)
155
156(defmethod copy-instance :around ((object monom) &rest initargs &key &allow-other-keys)
157 "An :AROUNT method for COPY-INSTANCE. The primary method is a shallow copy,
158 while for monomials we typically need a fresh copy of the
159 exponents."
160 (declare (ignore object initargs))
161 (let ((copy (call-next-method)))
162 (setf (monom-exponents copy) (copy-seq (monom-exponents copy)))
163 copy))
164
165(defmethod r* ((m1 monom) (m2 monom))
166 "Non-destructively multiply monomial M1 by M2."
167 (multiply-by (copy-instance m1) (copy-instance m2)))
168
169(defmethod r/ ((m1 monom) (m2 monom))
170 "Non-destructively divide monomial M1 by monomial M2."
171 (divide-by (copy-instance m1) (copy-instance m2)))
172
173(defmethod r-divides-p ((m1 monom) (m2 monom))
174 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
175 (with-slots ((exponents1 exponents))
176 m1
177 (with-slots ((exponents2 exponents))
178 m2
179 (every #'<= exponents1 exponents2))))
180
181
182(defmethod r-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
183 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
184 (every #'(lambda (x y z) (<= x (max y z)))
185 m1 m2 m3))
186
187
188(defmethod r-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
189 "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
190 (declare (type monom m1 m2 m3 m4))
191 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
192 m1 m2 m3 m4))
193
194(defmethod r-lcm-equal-lcm-p (m1 m2 m3 m4)
195 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
196 (with-slots ((exponents1 exponents))
197 m1
198 (with-slots ((exponents2 exponents))
199 m2
200 (with-slots ((exponents3 exponents))
201 m3
202 (with-slots ((exponents4 exponents))
203 m4
204 (every
205 #'(lambda (x y z w) (= (max x y) (max z w)))
206 exponents1 exponents2 exponents3 exponents4))))))
207
208(defmethod r-divisible-by-p ((m1 monom) (m2 monom))
209 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
210 (with-slots ((exponents1 exponents))
211 m1
212 (with-slots ((exponents2 exponents))
213 m2
214 (every #'>= exponents1 exponents2))))
215
216(defmethod r-rel-prime-p ((m1 monom) (m2 monom))
217 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
218 (with-slots ((exponents1 exponents))
219 m1
220 (with-slots ((exponents2 exponents))
221 m2
222 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
223
224
225(defmethod r-lcm ((m1 monom) (m2 monom))
226 "Returns least common multiple of monomials M1 and M2."
227 (with-slots ((exponents1 exponents) (dimension1 dimension))
228 m1
229 (with-slots ((exponents2 exponents))
230 m2
231 (let* ((exponents (copy-seq exponents1))
232 (dimension dimension1))
233 (map-into exponents #'max exponents1 exponents2)
234 (make-instance 'monom :dimension dimension :exponents exponents)))))
235
236
237(defmethod r-gcd ((m1 monom) (m2 monom))
238 "Returns greatest common divisor of monomials M1 and M2."
239 (with-slots ((exponents1 exponents) (dimension1 dimension))
240 m1
241 (with-slots ((exponents2 exponents))
242 m2
243 (let* ((exponents (copy-seq exponents1))
244 (dimension dimension1))
245 (map-into exponents #'min exponents1 exponents2)
246 (make-instance 'monom :dimension dimension :exponents exponents)))))
247
248(defmethod r-depends-p ((m monom) k)
249 "Return T if the monomial M depends on variable number K."
250 (declare (type fixnum k))
251 (with-slots (exponents)
252 m
253 (plusp (elt exponents k))))
254
255(defmethod left-tensor-product-by ((self monom) (other monom))
256 (with-slots ((exponents1 exponents) (dimension1 dimension))
257 self
258 (with-slots ((exponents2 exponents) (dimension2 dimension))
259 other
260 (setf dimension1 (+ dimension1 dimension2)
261 exponents1 (concatenate 'vector exponents2 exponents1))))
262 self)
263
264(defmethod right-tensor-product-by ((self monom) (other monom))
265 (with-slots ((exponents1 exponents) (dimension1 dimension))
266 self
267 (with-slots ((exponents2 exponents) (dimension2 dimension))
268 other
269 (setf dimension1 (+ dimension1 dimension2)
270 exponents1 (concatenate 'vector exponents1 exponents2))))
271 self)
272
273(defmethod left-contract ((self monom) k)
274 "Drop the first K variables in monomial M."
275 (declare (fixnum k))
276 (with-slots (dimension exponents)
277 self
278 (setf dimension (- dimension k)
279 exponents (subseq exponents k)))
280 self)
281
282(defun make-monom-variable (nvars pos &optional (power 1)
283 &aux (m (make-instance 'monom :dimension nvars)))
284 "Construct a monomial in the polynomial ring
285RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
286which represents a single variable. It assumes number of variables
287NVARS and the variable is at position POS. Optionally, the variable
288may appear raised to power POWER. "
289 (declare (type fixnum nvars pos power) (type monom m))
290 (with-slots (exponents)
291 m
292 (setf (elt exponents pos) power)
293 m))
294
295(defmethod r->list ((m monom))
296 "A human-readable representation of a monomial M as a list of exponents."
297 (coerce (monom-exponents m) 'list))
298
299(defmethod r-dimension ((self monom))
300 (monom-dimension self))
301
302(defmethod r-exponents ((self monom))
303 (monom-exponents self))
Note: See TracBrowser for help on using the repository browser.