[1201] | 1 | ;;; -*- Mode: Lisp -*-
|
---|
[81] | 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 3 | ;;;
|
---|
| 4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
| 5 | ;;;
|
---|
| 6 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
| 7 | ;;; it under the terms of the GNU General Public License as published by
|
---|
| 8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
| 9 | ;;; (at your option) any later version.
|
---|
| 10 | ;;;
|
---|
| 11 | ;;; This program is distributed in the hope that it will be useful,
|
---|
| 12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | ;;; GNU General Public License for more details.
|
---|
| 15 | ;;;
|
---|
| 16 | ;;; You should have received a copy of the GNU General Public License
|
---|
| 17 | ;;; along with this program; if not, write to the Free Software
|
---|
| 18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
| 19 | ;;;
|
---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 21 |
|
---|
[1610] | 22 | (defpackage "MONOM"
|
---|
[2025] | 23 | (:use :cl :ring)
|
---|
[422] | 24 | (:export "MONOM"
|
---|
[423] | 25 | "EXPONENT"
|
---|
[2781] | 26 | "MONOM-DIMENSION"
|
---|
| 27 | "MONOM-EXPONENTS"
|
---|
[2524] | 28 | "MAKE-MONOM-VARIABLE")
|
---|
| 29 | (:documentation
|
---|
| 30 | "This package implements basic operations on monomials.
|
---|
| 31 | DATA STRUCTURES: Conceptually, monomials can be represented as lists:
|
---|
[81] | 32 |
|
---|
[2524] | 33 | monom: (n1 n2 ... nk) where ni are non-negative integers
|
---|
| 34 |
|
---|
| 35 | However, lists may be implemented as other sequence types, so the
|
---|
| 36 | flexibility to change the representation should be maintained in the
|
---|
| 37 | code to use general operations on sequences whenever possible. The
|
---|
| 38 | optimization for the actual representation should be left to
|
---|
| 39 | declarations and the compiler.
|
---|
| 40 |
|
---|
| 41 | EXAMPLES: Suppose that variables are x and y. Then
|
---|
| 42 |
|
---|
| 43 | Monom x*y^2 ---> (1 2) "))
|
---|
| 44 |
|
---|
[1610] | 45 | (in-package :monom)
|
---|
[48] | 46 |
|
---|
[1925] | 47 | (proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
|
---|
[1923] | 48 |
|
---|
[48] | 49 | (deftype exponent ()
|
---|
| 50 | "Type of exponent in a monomial."
|
---|
| 51 | 'fixnum)
|
---|
| 52 |
|
---|
[2022] | 53 | (defclass monom ()
|
---|
[2779] | 54 | ((dimension :initarg :dimension :accessor monom-dimension)
|
---|
| 55 | (exponents :initarg :exponents :accessor monom-exponents))
|
---|
| 56 | (:default-initargs :dimension nil :exponents nil :exponent nil)
|
---|
| 57 | (:documentation
|
---|
| 58 | "Implements a monomial, i.e. a product of powers
|
---|
| 59 | of variables, like X*Y^2."))
|
---|
[880] | 60 |
|
---|
[2245] | 61 | (defmethod print-object ((self monom) stream)
|
---|
| 62 | (format stream "#<MONOM DIMENSION=~A EXPONENTS=~A>"
|
---|
[2779] | 63 | (monom-dimension self)
|
---|
| 64 | (monom-exponents self)))
|
---|
[2027] | 65 |
|
---|
[2390] | 66 | (defmethod shared-initialize :after ((self monom) slot-names
|
---|
| 67 | &key
|
---|
| 68 | dimension
|
---|
| 69 | exponents
|
---|
| 70 | exponent
|
---|
| 71 | &allow-other-keys
|
---|
| 72 | )
|
---|
[2354] | 73 | (if (eq slot-names t) (setf slot-names '(dimension exponents)))
|
---|
| 74 | (dolist (slot-name slot-names)
|
---|
[2357] | 75 | (case slot-name
|
---|
[2354] | 76 | (dimension
|
---|
[2355] | 77 | (cond (dimension
|
---|
| 78 | (setf (slot-value self 'dimension) dimension))
|
---|
[2354] | 79 | (exponents
|
---|
| 80 | (setf (slot-value self 'dimension) (length exponents)))
|
---|
| 81 | (t
|
---|
| 82 | (error "DIMENSION or EXPONENTS must not be NIL"))))
|
---|
| 83 | (exponents
|
---|
| 84 | (cond
|
---|
| 85 | ;; when exponents are supplied
|
---|
| 86 | (exponents
|
---|
[2356] | 87 | (let ((dim (length exponents)))
|
---|
[2405] | 88 | (when (and dimension (/= dimension dim))
|
---|
| 89 | (error "EXPONENTS must have length DIMENSION"))
|
---|
[2356] | 90 | (setf (slot-value self 'dimension) dim
|
---|
| 91 | (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
|
---|
[2354] | 92 | ;; when all exponents are to be identical
|
---|
[2356] | 93 | (t
|
---|
| 94 | (let ((dim (slot-value self 'dimension)))
|
---|
| 95 | (setf (slot-value self 'exponents)
|
---|
| 96 | (make-array (list dim) :initial-element (or exponent 0)
|
---|
| 97 | :element-type 'exponent)))))))))
|
---|
[717] | 98 |
|
---|
[2850] | 99 | (defmethod r-equalp ((m1 monom) (m2 monom))
|
---|
[2778] | 100 | "Returns T iff monomials M1 and M2 have identical
|
---|
| 101 | EXPONENTS."
|
---|
[2779] | 102 | (equalp (monom-exponents m1) (monom-exponents m2)))
|
---|
[2547] | 103 |
|
---|
[2398] | 104 | (defmethod r-coeff ((m monom))
|
---|
| 105 | "A MONOM can be treated as a special case of TERM,
|
---|
| 106 | where the coefficient is 1."
|
---|
| 107 | 1)
|
---|
[2397] | 108 |
|
---|
[2143] | 109 | (defmethod r-elt ((m monom) index)
|
---|
[48] | 110 | "Return the power in the monomial M of variable number INDEX."
|
---|
[2023] | 111 | (with-slots (exponents)
|
---|
| 112 | m
|
---|
[2154] | 113 | (elt exponents index)))
|
---|
[48] | 114 |
|
---|
[2160] | 115 | (defmethod (setf r-elt) (new-value (m monom) index)
|
---|
[2023] | 116 | "Return the power in the monomial M of variable number INDEX."
|
---|
| 117 | (with-slots (exponents)
|
---|
| 118 | m
|
---|
[2154] | 119 | (setf (elt exponents index) new-value)))
|
---|
[2023] | 120 |
|
---|
[2779] | 121 | (defmethod r-total-degree ((m monom) &optional (start 0) (end (monom-dimension m)))
|
---|
[48] | 122 | "Return the todal degree of a monomoal M. Optinally, a range
|
---|
| 123 | of variables may be specified with arguments START and END."
|
---|
[2023] | 124 | (declare (type fixnum start end))
|
---|
| 125 | (with-slots (exponents)
|
---|
| 126 | m
|
---|
[2154] | 127 | (reduce #'+ exponents :start start :end end)))
|
---|
[48] | 128 |
|
---|
[2064] | 129 |
|
---|
[2779] | 130 | (defmethod r-sugar ((m monom) &aux (start 0) (end (monom-dimension m)))
|
---|
[48] | 131 | "Return the sugar of a monomial M. Optinally, a range
|
---|
| 132 | of variables may be specified with arguments START and END."
|
---|
[2032] | 133 | (declare (type fixnum start end))
|
---|
[2155] | 134 | (r-total-degree m start end))
|
---|
[48] | 135 |
|
---|
[2478] | 136 | (defmethod multiply-by ((self monom) (other monom))
|
---|
[2807] | 137 | (with-slots ((exponents1 exponents) (dimension1 dimension))
|
---|
[2478] | 138 | self
|
---|
[2811] | 139 | (with-slots ((exponents2 exponents) (dimension2 dimension))
|
---|
[2478] | 140 | other
|
---|
[2811] | 141 | (unless (= dimension1 dimension2)
|
---|
[2813] | 142 | (error "Incompatible dimensions: ~A and ~A.~%" dimension1 dimension2))
|
---|
[2811] | 143 | (map-into exponents1 #'+ exponents1 exponents2)))
|
---|
[2480] | 144 | self)
|
---|
[2069] | 145 |
|
---|
[2818] | 146 | (defmethod divide-by ((self monom) (other monom))
|
---|
| 147 | (with-slots ((exponents1 exponents) (dimension1 dimension))
|
---|
| 148 | self
|
---|
| 149 | (with-slots ((exponents2 exponents) (dimension2 dimension))
|
---|
| 150 | other
|
---|
| 151 | (unless (= dimension1 dimension2)
|
---|
| 152 | (error "Incompatible dimensions: ~A and ~A.~%" dimension1 dimension2))
|
---|
| 153 | (map-into exponents1 #'- exponents1 exponents2)))
|
---|
| 154 | self)
|
---|
| 155 |
|
---|
[3004] | 156 | (defmethod copy-instance :around ((object monom) &rest initargs &key &allow-other-keys)
|
---|
[3018] | 157 | "An :AROUNT method for COPY-INSTANCE. The primary method is a shallow copy,
|
---|
| 158 | while for monomials we typically need a fresh copy of the
|
---|
| 159 | exponents."
|
---|
[3004] | 160 | (declare (ignore object initargs))
|
---|
[3002] | 161 | (let ((copy (call-next-method)))
|
---|
[3003] | 162 | (setf (monom-exponents copy) (copy-seq (monom-exponents copy)))
|
---|
[3002] | 163 | copy))
|
---|
[2950] | 164 |
|
---|
[2816] | 165 | (defmethod r* ((m1 monom) (m2 monom))
|
---|
| 166 | "Non-destructively multiply monomial M1 by M2."
|
---|
[2950] | 167 | (multiply-by (copy-monom m1) (copy-monom m2)))
|
---|
[2816] | 168 |
|
---|
[2144] | 169 | (defmethod r/ ((m1 monom) (m2 monom))
|
---|
[2819] | 170 | "Non-destructively divide monomial M1 by monomial M2."
|
---|
[2952] | 171 | (divide-by (copy-monom m1) (copy-monom m2)))
|
---|
[48] | 172 |
|
---|
[2144] | 173 | (defmethod r-divides-p ((m1 monom) (m2 monom))
|
---|
[48] | 174 | "Returns T if monomial M1 divides monomial M2, NIL otherwise."
|
---|
[2039] | 175 | (with-slots ((exponents1 exponents))
|
---|
| 176 | m1
|
---|
| 177 | (with-slots ((exponents2 exponents))
|
---|
| 178 | m2
|
---|
| 179 | (every #'<= exponents1 exponents2))))
|
---|
[48] | 180 |
|
---|
[2075] | 181 |
|
---|
[2144] | 182 | (defmethod r-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
|
---|
[2055] | 183 | "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
|
---|
[875] | 184 | (every #'(lambda (x y z) (<= x (max y z)))
|
---|
[869] | 185 | m1 m2 m3))
|
---|
[48] | 186 |
|
---|
[2049] | 187 |
|
---|
[2144] | 188 | (defmethod r-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
|
---|
[48] | 189 | "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
|
---|
[1890] | 190 | (declare (type monom m1 m2 m3 m4))
|
---|
[869] | 191 | (every #'(lambda (x y z w) (<= (max x y) (max z w)))
|
---|
| 192 | m1 m2 m3 m4))
|
---|
| 193 |
|
---|
[2144] | 194 | (defmethod r-lcm-equal-lcm-p (m1 m2 m3 m4)
|
---|
[2075] | 195 | "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
|
---|
[2171] | 196 | (with-slots ((exponents1 exponents))
|
---|
[2076] | 197 | m1
|
---|
[2171] | 198 | (with-slots ((exponents2 exponents))
|
---|
[2076] | 199 | m2
|
---|
[2171] | 200 | (with-slots ((exponents3 exponents))
|
---|
[2076] | 201 | m3
|
---|
[2171] | 202 | (with-slots ((exponents4 exponents))
|
---|
[2076] | 203 | m4
|
---|
[2077] | 204 | (every
|
---|
| 205 | #'(lambda (x y z w) (= (max x y) (max z w)))
|
---|
| 206 | exponents1 exponents2 exponents3 exponents4))))))
|
---|
[48] | 207 |
|
---|
[2144] | 208 | (defmethod r-divisible-by-p ((m1 monom) (m2 monom))
|
---|
[48] | 209 | "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
|
---|
[2171] | 210 | (with-slots ((exponents1 exponents))
|
---|
[2144] | 211 | m1
|
---|
[2171] | 212 | (with-slots ((exponents2 exponents))
|
---|
[2144] | 213 | m2
|
---|
| 214 | (every #'>= exponents1 exponents2))))
|
---|
[2078] | 215 |
|
---|
[2146] | 216 | (defmethod r-rel-prime-p ((m1 monom) (m2 monom))
|
---|
[48] | 217 | "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
|
---|
[2171] | 218 | (with-slots ((exponents1 exponents))
|
---|
[2078] | 219 | m1
|
---|
[2171] | 220 | (with-slots ((exponents2 exponents))
|
---|
[2078] | 221 | m2
|
---|
[2154] | 222 | (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
|
---|
[48] | 223 |
|
---|
[2076] | 224 |
|
---|
[2146] | 225 | (defmethod r-lcm ((m1 monom) (m2 monom))
|
---|
[48] | 226 | "Returns least common multiple of monomials M1 and M2."
|
---|
[2319] | 227 | (with-slots ((exponents1 exponents) (dimension1 dimension))
|
---|
[2082] | 228 | m1
|
---|
[2171] | 229 | (with-slots ((exponents2 exponents))
|
---|
[2082] | 230 | m2
|
---|
| 231 | (let* ((exponents (copy-seq exponents1))
|
---|
[2319] | 232 | (dimension dimension1))
|
---|
[2082] | 233 | (map-into exponents #'max exponents1 exponents2)
|
---|
[2200] | 234 | (make-instance 'monom :dimension dimension :exponents exponents)))))
|
---|
[48] | 235 |
|
---|
[2080] | 236 |
|
---|
[2146] | 237 | (defmethod r-gcd ((m1 monom) (m2 monom))
|
---|
[48] | 238 | "Returns greatest common divisor of monomials M1 and M2."
|
---|
[2320] | 239 | (with-slots ((exponents1 exponents) (dimension1 dimension))
|
---|
[2082] | 240 | m1
|
---|
[2171] | 241 | (with-slots ((exponents2 exponents))
|
---|
[2082] | 242 | m2
|
---|
| 243 | (let* ((exponents (copy-seq exponents1))
|
---|
[2320] | 244 | (dimension dimension1))
|
---|
[2082] | 245 | (map-into exponents #'min exponents1 exponents2)
|
---|
[2197] | 246 | (make-instance 'monom :dimension dimension :exponents exponents)))))
|
---|
[48] | 247 |
|
---|
[2146] | 248 | (defmethod r-depends-p ((m monom) k)
|
---|
[48] | 249 | "Return T if the monomial M depends on variable number K."
|
---|
[2083] | 250 | (declare (type fixnum k))
|
---|
| 251 | (with-slots (exponents)
|
---|
| 252 | m
|
---|
[2154] | 253 | (plusp (elt exponents k))))
|
---|
[48] | 254 |
|
---|
[3020] | 255 | (defmethod left-tensor-product-by ((self monom) (other monom))
|
---|
[2321] | 256 | (with-slots ((exponents1 exponents) (dimension1 dimension))
|
---|
[3020] | 257 | self
|
---|
[2321] | 258 | (with-slots ((exponents2 exponents) (dimension2 dimension))
|
---|
[3020] | 259 | other
|
---|
| 260 | (setf dimension1 (+ dimension1 dimension2)
|
---|
| 261 | exponents1 (concatenate 'vector exponents2 exponents1)))))
|
---|
[48] | 262 |
|
---|
[3026] | 263 | (defmethod right-tensor-product-by ((self monom) (other monom))
|
---|
| 264 | (with-slots ((exponents1 exponents) (dimension1 dimension))
|
---|
| 265 | self
|
---|
| 266 | (with-slots ((exponents2 exponents) (dimension2 dimension))
|
---|
| 267 | other
|
---|
| 268 | (setf dimension1 (+ dimension1 dimension2)
|
---|
| 269 | exponents1 (concatenate 'vector exponents1 exponents2)))))
|
---|
| 270 |
|
---|
[3021] | 271 | (defmethod left-contract ((m monom) k)
|
---|
[1638] | 272 | "Drop the first K variables in monomial M."
|
---|
[2085] | 273 | (declare (fixnum k))
|
---|
[2196] | 274 | (with-slots (dimension exponents)
|
---|
[2085] | 275 | m
|
---|
[2197] | 276 | (setf dimension (- dimension k)
|
---|
[2085] | 277 | exponents (subseq exponents k))))
|
---|
[886] | 278 |
|
---|
| 279 | (defun make-monom-variable (nvars pos &optional (power 1)
|
---|
[2218] | 280 | &aux (m (make-instance 'monom :dimension nvars)))
|
---|
[886] | 281 | "Construct a monomial in the polynomial ring
|
---|
| 282 | RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
|
---|
| 283 | which represents a single variable. It assumes number of variables
|
---|
| 284 | NVARS and the variable is at position POS. Optionally, the variable
|
---|
| 285 | may appear raised to power POWER. "
|
---|
[1924] | 286 | (declare (type fixnum nvars pos power) (type monom m))
|
---|
[2089] | 287 | (with-slots (exponents)
|
---|
| 288 | m
|
---|
[2154] | 289 | (setf (elt exponents pos) power)
|
---|
[2089] | 290 | m))
|
---|
[1151] | 291 |
|
---|
[2150] | 292 | (defmethod r->list ((m monom))
|
---|
[1152] | 293 | "A human-readable representation of a monomial M as a list of exponents."
|
---|
[2779] | 294 | (coerce (monom-exponents m) 'list))
|
---|
[2780] | 295 |
|
---|
[2783] | 296 | (defmethod r-dimension ((self monom))
|
---|
| 297 | (monom-dimension self))
|
---|
| 298 |
|
---|
[2780] | 299 | (defmethod r-exponents ((self monom))
|
---|
| 300 | (monom-exponents self))
|
---|