close Warning:

source: branches/f4grobner/monom.lisp@ 2811

Last change on this file since 2811 was 2811, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 9.7 KB
RevLine 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "MONOM"
23 (:use :cl :ring)
24 (:export "MONOM"
25 "EXPONENT"
26 "MONOM-DIMENSION"
27 "MONOM-EXPONENTS"
28 "MONOM-EQUALP"
29 "MAKE-MONOM-VARIABLE")
30 (:documentation
31 "This package implements basic operations on monomials.
32DATA STRUCTURES: Conceptually, monomials can be represented as lists:
33
34 monom: (n1 n2 ... nk) where ni are non-negative integers
35
36However, lists may be implemented as other sequence types, so the
37flexibility to change the representation should be maintained in the
38code to use general operations on sequences whenever possible. The
39optimization for the actual representation should be left to
40declarations and the compiler.
41
42EXAMPLES: Suppose that variables are x and y. Then
43
44 Monom x*y^2 ---> (1 2) "))
45
46(in-package :monom)
47
48(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
49
50(deftype exponent ()
51 "Type of exponent in a monomial."
52 'fixnum)
53
54(defclass monom ()
55 ((dimension :initarg :dimension :accessor monom-dimension)
56 (exponents :initarg :exponents :accessor monom-exponents))
57 (:default-initargs :dimension nil :exponents nil :exponent nil)
58 (:documentation
59 "Implements a monomial, i.e. a product of powers
60of variables, like X*Y^2."))
61
62(defmethod print-object ((self monom) stream)
63 (format stream "#<MONOM DIMENSION=~A EXPONENTS=~A>"
64 (monom-dimension self)
65 (monom-exponents self)))
66
67(defmethod shared-initialize :after ((self monom) slot-names
68 &key
69 dimension
70 exponents
71 exponent
72 &allow-other-keys
73 )
74 (if (eq slot-names t) (setf slot-names '(dimension exponents)))
75 (dolist (slot-name slot-names)
76 (case slot-name
77 (dimension
78 (cond (dimension
79 (setf (slot-value self 'dimension) dimension))
80 (exponents
81 (setf (slot-value self 'dimension) (length exponents)))
82 (t
83 (error "DIMENSION or EXPONENTS must not be NIL"))))
84 (exponents
85 (cond
86 ;; when exponents are supplied
87 (exponents
88 (let ((dim (length exponents)))
89 (when (and dimension (/= dimension dim))
90 (error "EXPONENTS must have length DIMENSION"))
91 (setf (slot-value self 'dimension) dim
92 (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
93 ;; when all exponents are to be identical
94 (t
95 (let ((dim (slot-value self 'dimension)))
96 (setf (slot-value self 'exponents)
97 (make-array (list dim) :initial-element (or exponent 0)
98 :element-type 'exponent)))))))))
99
100(defun monom-equalp (m1 m2)
101 "Returns T iff monomials M1 and M2 have identical
102EXPONENTS."
103 (declare (type monom m1 m2))
104 (equalp (monom-exponents m1) (monom-exponents m2)))
105
106(defmethod r-coeff ((m monom))
107 "A MONOM can be treated as a special case of TERM,
108where the coefficient is 1."
109 1)
110
111(defmethod r-elt ((m monom) index)
112 "Return the power in the monomial M of variable number INDEX."
113 (with-slots (exponents)
114 m
115 (elt exponents index)))
116
117(defmethod (setf r-elt) (new-value (m monom) index)
118 "Return the power in the monomial M of variable number INDEX."
119 (with-slots (exponents)
120 m
121 (setf (elt exponents index) new-value)))
122
123(defmethod r-total-degree ((m monom) &optional (start 0) (end (monom-dimension m)))
124 "Return the todal degree of a monomoal M. Optinally, a range
125of variables may be specified with arguments START and END."
126 (declare (type fixnum start end))
127 (with-slots (exponents)
128 m
129 (reduce #'+ exponents :start start :end end)))
130
131
132(defmethod r-sugar ((m monom) &aux (start 0) (end (monom-dimension m)))
133 "Return the sugar of a monomial M. Optinally, a range
134of variables may be specified with arguments START and END."
135 (declare (type fixnum start end))
136 (r-total-degree m start end))
137
138(defmethod multiply-by ((self monom) (other monom))
139 (with-slots ((exponents1 exponents) (dimension1 dimension))
140 self
141 (with-slots ((exponents2 exponents) (dimension2 dimension))
142 other
143 (unless (= dimension1 dimension2)
144 (error "Incompatible dimensions: ~A and ~A.~%" dimension1 and dimension2))
145 (map-into exponents1 #'+ exponents1 exponents2)))
146 self)
147
148(defmethod r/ ((m1 monom) (m2 monom))
149 "Divide monomial M1 by monomial M2."
150 (with-slots ((exponents1 exponents) (dimension1 dimension))
151 m1
152 (with-slots ((exponents2 exponents))
153 m2
154 (let* ((exponents (copy-seq exponents1))
155 (dimension dimension1))
156 (map-into exponents #'- exponents1 exponents2)
157 (make-instance 'monom :dimension dimension :exponents exponents)))))
158
159(defmethod r-divides-p ((m1 monom) (m2 monom))
160 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
161 (with-slots ((exponents1 exponents))
162 m1
163 (with-slots ((exponents2 exponents))
164 m2
165 (every #'<= exponents1 exponents2))))
166
167
168(defmethod r-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
169 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
170 (every #'(lambda (x y z) (<= x (max y z)))
171 m1 m2 m3))
172
173
174(defmethod r-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
175 "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
176 (declare (type monom m1 m2 m3 m4))
177 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
178 m1 m2 m3 m4))
179
180(defmethod r-lcm-equal-lcm-p (m1 m2 m3 m4)
181 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
182 (with-slots ((exponents1 exponents))
183 m1
184 (with-slots ((exponents2 exponents))
185 m2
186 (with-slots ((exponents3 exponents))
187 m3
188 (with-slots ((exponents4 exponents))
189 m4
190 (every
191 #'(lambda (x y z w) (= (max x y) (max z w)))
192 exponents1 exponents2 exponents3 exponents4))))))
193
194(defmethod r-divisible-by-p ((m1 monom) (m2 monom))
195 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
196 (with-slots ((exponents1 exponents))
197 m1
198 (with-slots ((exponents2 exponents))
199 m2
200 (every #'>= exponents1 exponents2))))
201
202(defmethod r-rel-prime-p ((m1 monom) (m2 monom))
203 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
204 (with-slots ((exponents1 exponents))
205 m1
206 (with-slots ((exponents2 exponents))
207 m2
208 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
209
210
211(defmethod r-equalp ((m1 monom) (m2 monom))
212 "Returns T if two monomials M1 and M2 are equal."
213 (monom-equalp m1 m2))
214
215(defmethod r-lcm ((m1 monom) (m2 monom))
216 "Returns least common multiple of monomials M1 and M2."
217 (with-slots ((exponents1 exponents) (dimension1 dimension))
218 m1
219 (with-slots ((exponents2 exponents))
220 m2
221 (let* ((exponents (copy-seq exponents1))
222 (dimension dimension1))
223 (map-into exponents #'max exponents1 exponents2)
224 (make-instance 'monom :dimension dimension :exponents exponents)))))
225
226
227(defmethod r-gcd ((m1 monom) (m2 monom))
228 "Returns greatest common divisor of monomials M1 and M2."
229 (with-slots ((exponents1 exponents) (dimension1 dimension))
230 m1
231 (with-slots ((exponents2 exponents))
232 m2
233 (let* ((exponents (copy-seq exponents1))
234 (dimension dimension1))
235 (map-into exponents #'min exponents1 exponents2)
236 (make-instance 'monom :dimension dimension :exponents exponents)))))
237
238(defmethod r-depends-p ((m monom) k)
239 "Return T if the monomial M depends on variable number K."
240 (declare (type fixnum k))
241 (with-slots (exponents)
242 m
243 (plusp (elt exponents k))))
244
245(defmethod r-tensor-product ((m1 monom) (m2 monom))
246 (with-slots ((exponents1 exponents) (dimension1 dimension))
247 m1
248 (with-slots ((exponents2 exponents) (dimension2 dimension))
249 m2
250 (make-instance 'monom
251 :dimension (+ dimension1 dimension2)
252 :exponents (concatenate 'vector exponents1 exponents2)))))
253
254(defmethod r-contract ((m monom) k)
255 "Drop the first K variables in monomial M."
256 (declare (fixnum k))
257 (with-slots (dimension exponents)
258 m
259 (setf dimension (- dimension k)
260 exponents (subseq exponents k))))
261
262(defun make-monom-variable (nvars pos &optional (power 1)
263 &aux (m (make-instance 'monom :dimension nvars)))
264 "Construct a monomial in the polynomial ring
265RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
266which represents a single variable. It assumes number of variables
267NVARS and the variable is at position POS. Optionally, the variable
268may appear raised to power POWER. "
269 (declare (type fixnum nvars pos power) (type monom m))
270 (with-slots (exponents)
271 m
272 (setf (elt exponents pos) power)
273 m))
274
275(defmethod r->list ((m monom))
276 "A human-readable representation of a monomial M as a list of exponents."
277 (coerce (monom-exponents m) 'list))
278
279(defmethod r-dimension ((self monom))
280 (monom-dimension self))
281
282(defmethod r-exponents ((self monom))
283 (monom-exponents self))
Note: See TracBrowser for help on using the repository browser.