[1201] | 1 | ;;; -*- Mode: Lisp -*-
|
---|
[81] | 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 3 | ;;;
|
---|
| 4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
| 5 | ;;;
|
---|
| 6 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
| 7 | ;;; it under the terms of the GNU General Public License as published by
|
---|
| 8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
| 9 | ;;; (at your option) any later version.
|
---|
| 10 | ;;;
|
---|
| 11 | ;;; This program is distributed in the hope that it will be useful,
|
---|
| 12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | ;;; GNU General Public License for more details.
|
---|
| 15 | ;;;
|
---|
| 16 | ;;; You should have received a copy of the GNU General Public License
|
---|
| 17 | ;;; along with this program; if not, write to the Free Software
|
---|
| 18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
| 19 | ;;;
|
---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 21 |
|
---|
[1610] | 22 | (defpackage "MONOM"
|
---|
[2025] | 23 | (:use :cl :ring)
|
---|
[422] | 24 | (:export "MONOM"
|
---|
[423] | 25 | "EXPONENT"
|
---|
[2524] | 26 | "MAKE-MONOM-VARIABLE")
|
---|
| 27 | (:documentation
|
---|
| 28 | "This package implements basic operations on monomials.
|
---|
| 29 | DATA STRUCTURES: Conceptually, monomials can be represented as lists:
|
---|
[81] | 30 |
|
---|
[2524] | 31 | monom: (n1 n2 ... nk) where ni are non-negative integers
|
---|
| 32 |
|
---|
| 33 | However, lists may be implemented as other sequence types, so the
|
---|
| 34 | flexibility to change the representation should be maintained in the
|
---|
| 35 | code to use general operations on sequences whenever possible. The
|
---|
| 36 | optimization for the actual representation should be left to
|
---|
| 37 | declarations and the compiler.
|
---|
| 38 |
|
---|
| 39 | EXAMPLES: Suppose that variables are x and y. Then
|
---|
| 40 |
|
---|
| 41 | Monom x*y^2 ---> (1 2) "))
|
---|
| 42 |
|
---|
[1610] | 43 | (in-package :monom)
|
---|
[48] | 44 |
|
---|
[1925] | 45 | (proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
|
---|
[1923] | 46 |
|
---|
[48] | 47 | (deftype exponent ()
|
---|
| 48 | "Type of exponent in a monomial."
|
---|
| 49 | 'fixnum)
|
---|
| 50 |
|
---|
[2022] | 51 | (defclass monom ()
|
---|
[2361] | 52 | ((dimension :initarg :dimension :accessor r-dimension)
|
---|
| 53 | (exponents :initarg :exponents :accessor r-exponents))
|
---|
[2268] | 54 | (:default-initargs :dimension nil :exponents nil :exponent nil))
|
---|
[880] | 55 |
|
---|
[2245] | 56 | (defmethod print-object ((self monom) stream)
|
---|
| 57 | (format stream "#<MONOM DIMENSION=~A EXPONENTS=~A>"
|
---|
[2362] | 58 | (r-dimension self)
|
---|
[2366] | 59 | (r-exponents self)))
|
---|
[2027] | 60 |
|
---|
[2390] | 61 | (defmethod shared-initialize :after ((self monom) slot-names
|
---|
| 62 | &key
|
---|
| 63 | dimension
|
---|
| 64 | exponents
|
---|
| 65 | exponent
|
---|
| 66 | &allow-other-keys
|
---|
| 67 | )
|
---|
[2354] | 68 | (if (eq slot-names t) (setf slot-names '(dimension exponents)))
|
---|
| 69 | (dolist (slot-name slot-names)
|
---|
[2357] | 70 | (case slot-name
|
---|
[2354] | 71 | (dimension
|
---|
[2355] | 72 | (cond (dimension
|
---|
| 73 | (setf (slot-value self 'dimension) dimension))
|
---|
[2354] | 74 | (exponents
|
---|
| 75 | (setf (slot-value self 'dimension) (length exponents)))
|
---|
| 76 | (t
|
---|
| 77 | (error "DIMENSION or EXPONENTS must not be NIL"))))
|
---|
| 78 | (exponents
|
---|
| 79 | (cond
|
---|
| 80 | ;; when exponents are supplied
|
---|
| 81 | (exponents
|
---|
[2356] | 82 | (let ((dim (length exponents)))
|
---|
[2405] | 83 | (when (and dimension (/= dimension dim))
|
---|
| 84 | (error "EXPONENTS must have length DIMENSION"))
|
---|
[2356] | 85 | (setf (slot-value self 'dimension) dim
|
---|
| 86 | (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
|
---|
[2354] | 87 | ;; when all exponents are to be identical
|
---|
[2356] | 88 | (t
|
---|
| 89 | (let ((dim (slot-value self 'dimension)))
|
---|
| 90 | (setf (slot-value self 'exponents)
|
---|
| 91 | (make-array (list dim) :initial-element (or exponent 0)
|
---|
| 92 | :element-type 'exponent)))))))))
|
---|
[717] | 93 |
|
---|
[2547] | 94 | (defgeneric monom= (object1 object2)
|
---|
| 95 | (:method ((object1 monom) (object2 monom))
|
---|
| 96 | (equal (r-exponents object1) (r-exponents object2))))
|
---|
| 97 |
|
---|
[2398] | 98 | (defmethod r-coeff ((m monom))
|
---|
| 99 | "A MONOM can be treated as a special case of TERM,
|
---|
| 100 | where the coefficient is 1."
|
---|
| 101 | 1)
|
---|
[2397] | 102 |
|
---|
[2143] | 103 | (defmethod r-elt ((m monom) index)
|
---|
[48] | 104 | "Return the power in the monomial M of variable number INDEX."
|
---|
[2023] | 105 | (with-slots (exponents)
|
---|
| 106 | m
|
---|
[2154] | 107 | (elt exponents index)))
|
---|
[48] | 108 |
|
---|
[2160] | 109 | (defmethod (setf r-elt) (new-value (m monom) index)
|
---|
[2023] | 110 | "Return the power in the monomial M of variable number INDEX."
|
---|
| 111 | (with-slots (exponents)
|
---|
| 112 | m
|
---|
[2154] | 113 | (setf (elt exponents index) new-value)))
|
---|
[2023] | 114 |
|
---|
[2149] | 115 | (defmethod r-total-degree ((m monom) &optional (start 0) (end (r-dimension m)))
|
---|
[48] | 116 | "Return the todal degree of a monomoal M. Optinally, a range
|
---|
| 117 | of variables may be specified with arguments START and END."
|
---|
[2023] | 118 | (declare (type fixnum start end))
|
---|
| 119 | (with-slots (exponents)
|
---|
| 120 | m
|
---|
[2154] | 121 | (reduce #'+ exponents :start start :end end)))
|
---|
[48] | 122 |
|
---|
[2064] | 123 |
|
---|
[2149] | 124 | (defmethod r-sugar ((m monom) &aux (start 0) (end (r-dimension m)))
|
---|
[48] | 125 | "Return the sugar of a monomial M. Optinally, a range
|
---|
| 126 | of variables may be specified with arguments START and END."
|
---|
[2032] | 127 | (declare (type fixnum start end))
|
---|
[2155] | 128 | (r-total-degree m start end))
|
---|
[48] | 129 |
|
---|
[2414] | 130 | (defmethod r* ((m1 monom) (m2 monom))
|
---|
[2072] | 131 | "Multiply monomial M1 by monomial M2."
|
---|
[2195] | 132 | (with-slots ((exponents1 exponents) dimension)
|
---|
[2038] | 133 | m1
|
---|
[2170] | 134 | (with-slots ((exponents2 exponents))
|
---|
[2038] | 135 | m2
|
---|
[2167] | 136 | (let* ((exponents (copy-seq exponents1)))
|
---|
[2154] | 137 | (map-into exponents #'+ exponents1 exponents2)
|
---|
[2414] | 138 | (make-instance 'monom :dimension dimension :exponents exponents)))))
|
---|
[2038] | 139 |
|
---|
[2478] | 140 | (defmethod multiply-by ((self monom) (other monom))
|
---|
[2479] | 141 | (with-slots ((exponents1 exponents))
|
---|
[2478] | 142 | self
|
---|
| 143 | (with-slots ((exponents2 exponents))
|
---|
| 144 | other
|
---|
[2480] | 145 | (map-into exponents1 #'+ exponents1 exponents2)))
|
---|
| 146 | self)
|
---|
[2069] | 147 |
|
---|
[2144] | 148 | (defmethod r/ ((m1 monom) (m2 monom))
|
---|
[1896] | 149 | "Divide monomial M1 by monomial M2."
|
---|
[2313] | 150 | (with-slots ((exponents1 exponents) (dimension1 dimension))
|
---|
[2034] | 151 | m1
|
---|
[2037] | 152 | (with-slots ((exponents2 exponents))
|
---|
[2034] | 153 | m2
|
---|
| 154 | (let* ((exponents (copy-seq exponents1))
|
---|
[2314] | 155 | (dimension dimension1))
|
---|
[2154] | 156 | (map-into exponents #'- exponents1 exponents2)
|
---|
[2195] | 157 | (make-instance 'monom :dimension dimension :exponents exponents)))))
|
---|
[48] | 158 |
|
---|
[2144] | 159 | (defmethod r-divides-p ((m1 monom) (m2 monom))
|
---|
[48] | 160 | "Returns T if monomial M1 divides monomial M2, NIL otherwise."
|
---|
[2039] | 161 | (with-slots ((exponents1 exponents))
|
---|
| 162 | m1
|
---|
| 163 | (with-slots ((exponents2 exponents))
|
---|
| 164 | m2
|
---|
| 165 | (every #'<= exponents1 exponents2))))
|
---|
[48] | 166 |
|
---|
[2075] | 167 |
|
---|
[2144] | 168 | (defmethod r-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
|
---|
[2055] | 169 | "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
|
---|
[875] | 170 | (every #'(lambda (x y z) (<= x (max y z)))
|
---|
[869] | 171 | m1 m2 m3))
|
---|
[48] | 172 |
|
---|
[2049] | 173 |
|
---|
[2144] | 174 | (defmethod r-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
|
---|
[48] | 175 | "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
|
---|
[1890] | 176 | (declare (type monom m1 m2 m3 m4))
|
---|
[869] | 177 | (every #'(lambda (x y z w) (<= (max x y) (max z w)))
|
---|
| 178 | m1 m2 m3 m4))
|
---|
| 179 |
|
---|
[2144] | 180 | (defmethod r-lcm-equal-lcm-p (m1 m2 m3 m4)
|
---|
[2075] | 181 | "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
|
---|
[2171] | 182 | (with-slots ((exponents1 exponents))
|
---|
[2076] | 183 | m1
|
---|
[2171] | 184 | (with-slots ((exponents2 exponents))
|
---|
[2076] | 185 | m2
|
---|
[2171] | 186 | (with-slots ((exponents3 exponents))
|
---|
[2076] | 187 | m3
|
---|
[2171] | 188 | (with-slots ((exponents4 exponents))
|
---|
[2076] | 189 | m4
|
---|
[2077] | 190 | (every
|
---|
| 191 | #'(lambda (x y z w) (= (max x y) (max z w)))
|
---|
| 192 | exponents1 exponents2 exponents3 exponents4))))))
|
---|
[48] | 193 |
|
---|
[2144] | 194 | (defmethod r-divisible-by-p ((m1 monom) (m2 monom))
|
---|
[48] | 195 | "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
|
---|
[2171] | 196 | (with-slots ((exponents1 exponents))
|
---|
[2144] | 197 | m1
|
---|
[2171] | 198 | (with-slots ((exponents2 exponents))
|
---|
[2144] | 199 | m2
|
---|
| 200 | (every #'>= exponents1 exponents2))))
|
---|
[2078] | 201 |
|
---|
[2146] | 202 | (defmethod r-rel-prime-p ((m1 monom) (m2 monom))
|
---|
[48] | 203 | "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
|
---|
[2171] | 204 | (with-slots ((exponents1 exponents))
|
---|
[2078] | 205 | m1
|
---|
[2171] | 206 | (with-slots ((exponents2 exponents))
|
---|
[2078] | 207 | m2
|
---|
[2154] | 208 | (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
|
---|
[48] | 209 |
|
---|
[2076] | 210 |
|
---|
[2163] | 211 | (defmethod r-equalp ((m1 monom) (m2 monom))
|
---|
[48] | 212 | "Returns T if two monomials M1 and M2 are equal."
|
---|
[2171] | 213 | (with-slots ((exponents1 exponents))
|
---|
[2079] | 214 | m1
|
---|
[2171] | 215 | (with-slots ((exponents2 exponents))
|
---|
[2079] | 216 | m2
|
---|
| 217 | (every #'= exponents1 exponents2))))
|
---|
[48] | 218 |
|
---|
[2146] | 219 | (defmethod r-lcm ((m1 monom) (m2 monom))
|
---|
[48] | 220 | "Returns least common multiple of monomials M1 and M2."
|
---|
[2319] | 221 | (with-slots ((exponents1 exponents) (dimension1 dimension))
|
---|
[2082] | 222 | m1
|
---|
[2171] | 223 | (with-slots ((exponents2 exponents))
|
---|
[2082] | 224 | m2
|
---|
| 225 | (let* ((exponents (copy-seq exponents1))
|
---|
[2319] | 226 | (dimension dimension1))
|
---|
[2082] | 227 | (map-into exponents #'max exponents1 exponents2)
|
---|
[2200] | 228 | (make-instance 'monom :dimension dimension :exponents exponents)))))
|
---|
[48] | 229 |
|
---|
[2080] | 230 |
|
---|
[2146] | 231 | (defmethod r-gcd ((m1 monom) (m2 monom))
|
---|
[48] | 232 | "Returns greatest common divisor of monomials M1 and M2."
|
---|
[2320] | 233 | (with-slots ((exponents1 exponents) (dimension1 dimension))
|
---|
[2082] | 234 | m1
|
---|
[2171] | 235 | (with-slots ((exponents2 exponents))
|
---|
[2082] | 236 | m2
|
---|
| 237 | (let* ((exponents (copy-seq exponents1))
|
---|
[2320] | 238 | (dimension dimension1))
|
---|
[2082] | 239 | (map-into exponents #'min exponents1 exponents2)
|
---|
[2197] | 240 | (make-instance 'monom :dimension dimension :exponents exponents)))))
|
---|
[48] | 241 |
|
---|
[2146] | 242 | (defmethod r-depends-p ((m monom) k)
|
---|
[48] | 243 | "Return T if the monomial M depends on variable number K."
|
---|
[2083] | 244 | (declare (type fixnum k))
|
---|
| 245 | (with-slots (exponents)
|
---|
| 246 | m
|
---|
[2154] | 247 | (plusp (elt exponents k))))
|
---|
[48] | 248 |
|
---|
[2321] | 249 | (defmethod r-tensor-product ((m1 monom) (m2 monom))
|
---|
| 250 | (with-slots ((exponents1 exponents) (dimension1 dimension))
|
---|
[2087] | 251 | m1
|
---|
[2321] | 252 | (with-slots ((exponents2 exponents) (dimension2 dimension))
|
---|
[2087] | 253 | m2
|
---|
[2147] | 254 | (make-instance 'monom
|
---|
[2321] | 255 | :dimension (+ dimension1 dimension2)
|
---|
[2147] | 256 | :exponents (concatenate 'vector exponents1 exponents2)))))
|
---|
[48] | 257 |
|
---|
[2148] | 258 | (defmethod r-contract ((m monom) k)
|
---|
[1638] | 259 | "Drop the first K variables in monomial M."
|
---|
[2085] | 260 | (declare (fixnum k))
|
---|
[2196] | 261 | (with-slots (dimension exponents)
|
---|
[2085] | 262 | m
|
---|
[2197] | 263 | (setf dimension (- dimension k)
|
---|
[2085] | 264 | exponents (subseq exponents k))))
|
---|
[886] | 265 |
|
---|
| 266 | (defun make-monom-variable (nvars pos &optional (power 1)
|
---|
[2218] | 267 | &aux (m (make-instance 'monom :dimension nvars)))
|
---|
[886] | 268 | "Construct a monomial in the polynomial ring
|
---|
| 269 | RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
|
---|
| 270 | which represents a single variable. It assumes number of variables
|
---|
| 271 | NVARS and the variable is at position POS. Optionally, the variable
|
---|
| 272 | may appear raised to power POWER. "
|
---|
[1924] | 273 | (declare (type fixnum nvars pos power) (type monom m))
|
---|
[2089] | 274 | (with-slots (exponents)
|
---|
| 275 | m
|
---|
[2154] | 276 | (setf (elt exponents pos) power)
|
---|
[2089] | 277 | m))
|
---|
[1151] | 278 |
|
---|
[2150] | 279 | (defmethod r->list ((m monom))
|
---|
[1152] | 280 | "A human-readable representation of a monomial M as a list of exponents."
|
---|
[2364] | 281 | (coerce (r-exponents m) 'list))
|
---|