close Warning:

source: branches/f4grobner/monom.lisp@ 2215

Last change on this file since 2215 was 2215, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 9.9 KB
RevLine 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22;;----------------------------------------------------------------
23;; This package implements BASIC OPERATIONS ON MONOMIALS
24;;----------------------------------------------------------------
25;; DATA STRUCTURES: Conceptually, monomials can be represented as lists:
26;;
27;; monom: (n1 n2 ... nk) where ni are non-negative integers
28;;
29;; However, lists may be implemented as other sequence types,
30;; so the flexibility to change the representation should be
31;; maintained in the code to use general operations on sequences
32;; whenever possible. The optimization for the actual representation
33;; should be left to declarations and the compiler.
34;;----------------------------------------------------------------
35;; EXAMPLES: Suppose that variables are x and y. Then
36;;
37;; Monom x*y^2 ---> (1 2)
38;;
39;;----------------------------------------------------------------
40
41(defpackage "MONOM"
42 (:use :cl :ring)
43 (:export "MONOM"
44 "EXPONENT"
45 "MAKE-MONOM"
46 "MONOM-DIMENSION"
47 "MONOM-EXPONENTS"
48 "MAKE-MONOM-VARIABLE"))
49
50(in-package :monom)
51
52(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
53
54(deftype exponent ()
55 "Type of exponent in a monomial."
56 'fixnum)
57
58(defclass monom ()
59 ((dimension :initarg :dimension :accessor monom-dimension)
60 (exponents :initarg :exponents :accessor monom-exponents))
61 (:default-initargs :dimension 0 :exponents nil))
62
63(defmethod print-object ((m monom) stream)
64 (princ (slot-value m 'exponents) stream))
65
66(defmethod initialize-instance ((self monom)
67 &key
68 (dimension nil dimension-suppied-p)
69 (exponents nil exponents-supplied-p)
70 (exponent nil exponent-supplied-p))
71 "A constructor (factory) of monomials. If DIMENSION is given, a
72sequence of DIMENSION elements of type EXPONENT is constructed, where
73individual elements are the value of EXPONENT, which defaults
74to 0. Alternatively, all elements may be specified as a list
75EXPONENTS."
76 (format t "INITIALIZE-INSTANCE called with DIMENSION ~A(~A), EXPONENTS ~A(~A), EXPONENT ~A(~A).~%"
77 dimension dimension-suppied-p
78 exponents exponents-supplied-p
79 exponent exponent-supplied-p)
80 #|
81 (let ((new-dimension (cond (dimension-suppied-p dimension)
82 (exponents-supplied-p
83 (length exponents))
84 (t
85 (error "You must provide DIMENSION or EXPONENTS"))))
86 (new-exponents (cond
87 ;; when exponents are supplied
88 (exponents-supplied-p
89 (make-array (list dimension) :initial-contents exponents
90 :element-type 'exponent))
91 ;; when all exponents are to be identical
92 (exponent-supplied-p
93 (make-array (list dimension) :initial-element exponent
94 :element-type 'exponent))
95 ;; otherwise, all exponents are zero
96 (t
97 (make-array (list dimension) :element-type 'exponent :initial-element 0)))))
98 |#
99 (call-next-method))
100
101;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
102;;
103;; Operations on monomials
104;;
105;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
106
107(defmethod r-dimension ((m monom))
108 (monom-dimension m))
109
110(defmethod r-elt ((m monom) index)
111 "Return the power in the monomial M of variable number INDEX."
112 (with-slots (exponents)
113 m
114 (elt exponents index)))
115
116(defmethod (setf r-elt) (new-value (m monom) index)
117 "Return the power in the monomial M of variable number INDEX."
118 (with-slots (exponents)
119 m
120 (setf (elt exponents index) new-value)))
121
122(defmethod r-total-degree ((m monom) &optional (start 0) (end (r-dimension m)))
123 "Return the todal degree of a monomoal M. Optinally, a range
124of variables may be specified with arguments START and END."
125 (declare (type fixnum start end))
126 (with-slots (exponents)
127 m
128 (reduce #'+ exponents :start start :end end)))
129
130
131(defmethod r-sugar ((m monom) &aux (start 0) (end (r-dimension m)))
132 "Return the sugar of a monomial M. Optinally, a range
133of variables may be specified with arguments START and END."
134 (declare (type fixnum start end))
135 (r-total-degree m start end))
136
137(defmethod r* ((m1 monom) (m2 monom))
138 "Multiply monomial M1 by monomial M2."
139 (with-slots ((exponents1 exponents) dimension)
140 m1
141 (with-slots ((exponents2 exponents))
142 m2
143 (let* ((exponents (copy-seq exponents1)))
144 (map-into exponents #'+ exponents1 exponents2)
145 (make-instance 'monom :dimension dimension :exponents exponents)))))
146
147
148
149(defmethod r/ ((m1 monom) (m2 monom))
150 "Divide monomial M1 by monomial M2."
151 (with-slots ((exponents1 exponents))
152 m1
153 (with-slots ((exponents2 exponents))
154 m2
155 (let* ((exponents (copy-seq exponents1))
156 (dimension (reduce #'+ exponents)))
157 (map-into exponents #'- exponents1 exponents2)
158 (make-instance 'monom :dimension dimension :exponents exponents)))))
159
160(defmethod r-divides-p ((m1 monom) (m2 monom))
161 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
162 (with-slots ((exponents1 exponents))
163 m1
164 (with-slots ((exponents2 exponents))
165 m2
166 (every #'<= exponents1 exponents2))))
167
168
169(defmethod r-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
170 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
171 (every #'(lambda (x y z) (<= x (max y z)))
172 m1 m2 m3))
173
174
175(defmethod r-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
176 "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
177 (declare (type monom m1 m2 m3 m4))
178 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
179 m1 m2 m3 m4))
180
181(defmethod r-lcm-equal-lcm-p (m1 m2 m3 m4)
182 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
183 (with-slots ((exponents1 exponents))
184 m1
185 (with-slots ((exponents2 exponents))
186 m2
187 (with-slots ((exponents3 exponents))
188 m3
189 (with-slots ((exponents4 exponents))
190 m4
191 (every
192 #'(lambda (x y z w) (= (max x y) (max z w)))
193 exponents1 exponents2 exponents3 exponents4))))))
194
195(defmethod r-divisible-by-p ((m1 monom) (m2 monom))
196 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
197 (with-slots ((exponents1 exponents))
198 m1
199 (with-slots ((exponents2 exponents))
200 m2
201 (every #'>= exponents1 exponents2))))
202
203(defmethod r-rel-prime-p ((m1 monom) (m2 monom))
204 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
205 (with-slots ((exponents1 exponents))
206 m1
207 (with-slots ((exponents2 exponents))
208 m2
209 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
210
211
212(defmethod r-equalp ((m1 monom) (m2 monom))
213 "Returns T if two monomials M1 and M2 are equal."
214 (with-slots ((exponents1 exponents))
215 m1
216 (with-slots ((exponents2 exponents))
217 m2
218 (every #'= exponents1 exponents2))))
219
220(defmethod r-lcm ((m1 monom) (m2 monom))
221 "Returns least common multiple of monomials M1 and M2."
222 (with-slots ((exponents1 exponents))
223 m1
224 (with-slots ((exponents2 exponents))
225 m2
226 (let* ((exponents (copy-seq exponents1))
227 (dimension (reduce #'+ exponents)))
228 (map-into exponents #'max exponents1 exponents2)
229 (make-instance 'monom :dimension dimension :exponents exponents)))))
230
231
232(defmethod r-gcd ((m1 monom) (m2 monom))
233 "Returns greatest common divisor of monomials M1 and M2."
234 (with-slots ((exponents1 exponents))
235 m1
236 (with-slots ((exponents2 exponents))
237 m2
238 (let* ((exponents (copy-seq exponents1))
239 (dimension (reduce #'+ exponents)))
240 (map-into exponents #'min exponents1 exponents2)
241 (make-instance 'monom :dimension dimension :exponents exponents)))))
242
243(defmethod r-depends-p ((m monom) k)
244 "Return T if the monomial M depends on variable number K."
245 (declare (type fixnum k))
246 (with-slots (exponents)
247 m
248 (plusp (elt exponents k))))
249
250(defmethod r-tensor-product ((m1 monom) (m2 monom)
251 &aux (dimension (+ (r-dimension m1) (r-dimension m2))))
252 (declare (fixnum dimension))
253 (with-slots ((exponents1 exponents))
254 m1
255 (with-slots ((exponents2 exponents))
256 m2
257 (make-instance 'monom
258 :dimension dimension
259 :exponents (concatenate 'vector exponents1 exponents2)))))
260
261(defmethod r-contract ((m monom) k)
262 "Drop the first K variables in monomial M."
263 (declare (fixnum k))
264 (with-slots (dimension exponents)
265 m
266 (setf dimension (- dimension k)
267 exponents (subseq exponents k))))
268
269(defun make-monom-variable (nvars pos &optional (power 1)
270 &aux (m (make-monom :dimension nvars)))
271 "Construct a monomial in the polynomial ring
272RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
273which represents a single variable. It assumes number of variables
274NVARS and the variable is at position POS. Optionally, the variable
275may appear raised to power POWER. "
276 (declare (type fixnum nvars pos power) (type monom m))
277 (with-slots (exponents)
278 m
279 (setf (elt exponents pos) power)
280 m))
281
282(defmethod r->list ((m monom))
283 "A human-readable representation of a monomial M as a list of exponents."
284 (coerce (monom-exponents m) 'list))
Note: See TracBrowser for help on using the repository browser.