close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 2196

Last change on this file since 2196 was 2196, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 10.0 KB
RevLine 
[1201]1;;; -*- Mode: Lisp -*-
[81]2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
[418]22;;----------------------------------------------------------------
23;; This package implements BASIC OPERATIONS ON MONOMIALS
24;;----------------------------------------------------------------
25;; DATA STRUCTURES: Conceptually, monomials can be represented as lists:
26;;
27;; monom: (n1 n2 ... nk) where ni are non-negative integers
28;;
29;; However, lists may be implemented as other sequence types,
30;; so the flexibility to change the representation should be
31;; maintained in the code to use general operations on sequences
32;; whenever possible. The optimization for the actual representation
33;; should be left to declarations and the compiler.
34;;----------------------------------------------------------------
35;; EXAMPLES: Suppose that variables are x and y. Then
36;;
[714]37;; Monom x*y^2 ---> (1 2)
[418]38;;
39;;----------------------------------------------------------------
40
[1610]41(defpackage "MONOM"
[2025]42 (:use :cl :ring)
[422]43 (:export "MONOM"
[423]44 "EXPONENT"
[2124]45 "MAKE-MONOM"
[2125]46 "MONOM-DIMENSION"
[2124]47 "MONOM-EXPONENTS"
48 "MAKE-MONOM-VARIABLE"))
[81]49
[1610]50(in-package :monom)
[48]51
[1925]52(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
[1923]53
[48]54(deftype exponent ()
55 "Type of exponent in a monomial."
56 'fixnum)
57
[2022]58(defclass monom ()
[2193]59 ((dimension :initarg :dimension :accessor monom-dimension)
[2125]60 (exponents :initarg :exponents :accessor monom-exponents))
[2022]61 (:default-initargs :dim 0 :exponents nil))
[880]62
[2028]63(defmethod print-object ((m monom) stream)
[2036]64 (princ (slot-value m 'exponents) stream))
[2027]65
[884]66;; If a monomial is redefined as structure with slot EXPONENTS, the function
67;; below can be the BOA constructor.
[873]68(defun make-monom (&key
69 (dimension nil dimension-suppied-p)
70 (initial-exponents nil initial-exponents-supplied-p)
71 (initial-exponent nil initial-exponent-supplied-p)
72 &aux
73 (dim (cond (dimension-suppied-p dimension)
74 (initial-exponents-supplied-p (length initial-exponents))
[2028]75 (t (error "You must provide DIMENSION or INITIAL-EXPONENTS"))))
[2022]76 (exponents (cond
77 ;; when exponents are supplied
78 (initial-exponents-supplied-p
[2182]79 (when (and dimension-suppied-p (/= dimension (length initial-exponents)))
80 (error "INITIAL-EXPONENTS must have length DIMENSION"))
[2022]81 (make-array (list dim) :initial-contents initial-exponents
82 :element-type 'exponent))
83 ;; when all exponents are to be identical
84 (initial-exponent-supplied-p
85 (make-array (list dim) :initial-element initial-exponent
86 :element-type 'exponent))
87 ;; otherwise, all exponents are zero
88 (t
89 (make-array (list dim) :element-type 'exponent :initial-element 0)))))
[1600]90 "A constructor (factory) of monomials. If DIMENSION is given, a sequence of
[1599]91DIMENSION elements of type EXPONENT is constructed, where individual
92elements are the value of INITIAL-EXPONENT, which defaults to 0.
93Alternatively, all elements may be specified as a list
94INITIAL-EXPONENTS."
[2194]95 (make-instance 'monom :dimension dim :exponents exponents))
[717]96
[48]97;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
98;;
99;; Operations on monomials
100;;
101;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
102
[2143]103(defmethod r-dimension ((m monom))
[2126]104 (monom-dimension m))
[745]105
[2143]106(defmethod r-elt ((m monom) index)
[48]107 "Return the power in the monomial M of variable number INDEX."
[2023]108 (with-slots (exponents)
109 m
[2154]110 (elt exponents index)))
[48]111
[2160]112(defmethod (setf r-elt) (new-value (m monom) index)
[2023]113 "Return the power in the monomial M of variable number INDEX."
114 (with-slots (exponents)
115 m
[2154]116 (setf (elt exponents index) new-value)))
[2023]117
[2149]118(defmethod r-total-degree ((m monom) &optional (start 0) (end (r-dimension m)))
[48]119 "Return the todal degree of a monomoal M. Optinally, a range
120of variables may be specified with arguments START and END."
[2023]121 (declare (type fixnum start end))
122 (with-slots (exponents)
123 m
[2154]124 (reduce #'+ exponents :start start :end end)))
[48]125
[2064]126
[2149]127(defmethod r-sugar ((m monom) &aux (start 0) (end (r-dimension m)))
[48]128 "Return the sugar of a monomial M. Optinally, a range
129of variables may be specified with arguments START and END."
[2032]130 (declare (type fixnum start end))
[2155]131 (r-total-degree m start end))
[48]132
[2144]133(defmethod r* ((m1 monom) (m2 monom))
[2072]134 "Multiply monomial M1 by monomial M2."
[2195]135 (with-slots ((exponents1 exponents) dimension)
[2038]136 m1
[2170]137 (with-slots ((exponents2 exponents))
[2038]138 m2
[2167]139 (let* ((exponents (copy-seq exponents1)))
[2154]140 (map-into exponents #'+ exponents1 exponents2)
[2195]141 (make-instance 'monom :dimension dimension :exponents exponents)))))
[2038]142
[2069]143
144
[2144]145(defmethod r/ ((m1 monom) (m2 monom))
[1896]146 "Divide monomial M1 by monomial M2."
[2037]147 (with-slots ((exponents1 exponents))
[2034]148 m1
[2037]149 (with-slots ((exponents2 exponents))
[2034]150 m2
151 (let* ((exponents (copy-seq exponents1))
[2195]152 (dimension (reduce #'+ exponents)))
[2154]153 (map-into exponents #'- exponents1 exponents2)
[2195]154 (make-instance 'monom :dimension dimension :exponents exponents)))))
[48]155
[2144]156(defmethod r-divides-p ((m1 monom) (m2 monom))
[48]157 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
[2039]158 (with-slots ((exponents1 exponents))
159 m1
160 (with-slots ((exponents2 exponents))
161 m2
162 (every #'<= exponents1 exponents2))))
[48]163
[2075]164
[2144]165(defmethod r-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
[2055]166 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
[875]167 (every #'(lambda (x y z) (<= x (max y z)))
[869]168 m1 m2 m3))
[48]169
[2049]170
[2144]171(defmethod r-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
[48]172 "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
[1890]173 (declare (type monom m1 m2 m3 m4))
[869]174 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
175 m1 m2 m3 m4))
176
[2144]177(defmethod r-lcm-equal-lcm-p (m1 m2 m3 m4)
[2075]178 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
[2171]179 (with-slots ((exponents1 exponents))
[2076]180 m1
[2171]181 (with-slots ((exponents2 exponents))
[2076]182 m2
[2171]183 (with-slots ((exponents3 exponents))
[2076]184 m3
[2171]185 (with-slots ((exponents4 exponents))
[2076]186 m4
[2077]187 (every
188 #'(lambda (x y z w) (= (max x y) (max z w)))
189 exponents1 exponents2 exponents3 exponents4))))))
[48]190
[2144]191(defmethod r-divisible-by-p ((m1 monom) (m2 monom))
[48]192 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
[2171]193 (with-slots ((exponents1 exponents))
[2144]194 m1
[2171]195 (with-slots ((exponents2 exponents))
[2144]196 m2
197 (every #'>= exponents1 exponents2))))
[2078]198
[2146]199(defmethod r-rel-prime-p ((m1 monom) (m2 monom))
[48]200 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
[2171]201 (with-slots ((exponents1 exponents))
[2078]202 m1
[2171]203 (with-slots ((exponents2 exponents))
[2078]204 m2
[2154]205 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
[48]206
[2076]207
[2163]208(defmethod r-equalp ((m1 monom) (m2 monom))
[48]209 "Returns T if two monomials M1 and M2 are equal."
[2171]210 (with-slots ((exponents1 exponents))
[2079]211 m1
[2171]212 (with-slots ((exponents2 exponents))
[2079]213 m2
214 (every #'= exponents1 exponents2))))
[48]215
[2146]216(defmethod r-lcm ((m1 monom) (m2 monom))
[48]217 "Returns least common multiple of monomials M1 and M2."
[2171]218 (with-slots ((exponents1 exponents))
[2082]219 m1
[2171]220 (with-slots ((exponents2 exponents))
[2082]221 m2
222 (let* ((exponents (copy-seq exponents1))
[2195]223 (dimension (reduce #'+ exponents)))
[2082]224 (map-into exponents #'max exponents1 exponents2)
[2195]225 (make-instance 'monom :dim dimension :exponents exponents)))))
[48]226
[2080]227
[2146]228(defmethod r-gcd ((m1 monom) (m2 monom))
[48]229 "Returns greatest common divisor of monomials M1 and M2."
[2171]230 (with-slots ((exponents1 exponents))
[2082]231 m1
[2171]232 (with-slots ((exponents2 exponents))
[2082]233 m2
234 (let* ((exponents (copy-seq exponents1))
[2195]235 (dimension (reduce #'+ exponents)))
[2082]236 (map-into exponents #'min exponents1 exponents2)
[2195]237 (make-instance 'monom :dim dimension :exponents exponents)))))
[48]238
[2146]239(defmethod r-depends-p ((m monom) k)
[48]240 "Return T if the monomial M depends on variable number K."
[2083]241 (declare (type fixnum k))
242 (with-slots (exponents)
243 m
[2154]244 (plusp (elt exponents k))))
[48]245
[2146]246(defmethod r-tensor-product ((m1 monom) (m2 monom)
[2195]247 &aux (dimension (+ (r-dimension m1) (r-dimension m2))))
248 (declare (fixnum dimension))
[2171]249 (with-slots ((exponents1 exponents))
[2087]250 m1
[2171]251 (with-slots ((exponents2 exponents))
[2087]252 m2
[2147]253 (make-instance 'monom
[2195]254 :dimension dimension
[2147]255 :exponents (concatenate 'vector exponents1 exponents2)))))
[48]256
[2148]257(defmethod r-contract ((m monom) k)
[1638]258 "Drop the first K variables in monomial M."
[2085]259 (declare (fixnum k))
[2196]260 (with-slots (dimension exponents)
[2085]261 m
[2196]262 (setf dimension (- dim k)
[2085]263 exponents (subseq exponents k))))
[886]264
265(defun make-monom-variable (nvars pos &optional (power 1)
266 &aux (m (make-monom :dimension nvars)))
267 "Construct a monomial in the polynomial ring
268RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
269which represents a single variable. It assumes number of variables
270NVARS and the variable is at position POS. Optionally, the variable
271may appear raised to power POWER. "
[1924]272 (declare (type fixnum nvars pos power) (type monom m))
[2089]273 (with-slots (exponents)
274 m
[2154]275 (setf (elt exponents pos) power)
[2089]276 m))
[1151]277
[2150]278(defmethod r->list ((m monom))
[1152]279 "A human-readable representation of a monomial M as a list of exponents."
[2148]280 (coerce (monom-exponents m) 'list))
Note: See TracBrowser for help on using the repository browser.