close Warning:

source: branches/f4grobner/monom.lisp@ 2191

Last change on this file since 2191 was 2182, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 9.9 KB
RevLine 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22;;----------------------------------------------------------------
23;; This package implements BASIC OPERATIONS ON MONOMIALS
24;;----------------------------------------------------------------
25;; DATA STRUCTURES: Conceptually, monomials can be represented as lists:
26;;
27;; monom: (n1 n2 ... nk) where ni are non-negative integers
28;;
29;; However, lists may be implemented as other sequence types,
30;; so the flexibility to change the representation should be
31;; maintained in the code to use general operations on sequences
32;; whenever possible. The optimization for the actual representation
33;; should be left to declarations and the compiler.
34;;----------------------------------------------------------------
35;; EXAMPLES: Suppose that variables are x and y. Then
36;;
37;; Monom x*y^2 ---> (1 2)
38;;
39;;----------------------------------------------------------------
40
41(defpackage "MONOM"
42 (:use :cl :ring)
43 (:export "MONOM"
44 "EXPONENT"
45 "MAKE-MONOM"
46 "MONOM-DIMENSION"
47 "MONOM-EXPONENTS"
48 "MAKE-MONOM-VARIABLE"))
49
50(in-package :monom)
51
52(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
53
54(deftype exponent ()
55 "Type of exponent in a monomial."
56 'fixnum)
57
58(defclass monom ()
59 ((dim :initarg :dim :accessor monom-dimension)
60 (exponents :initarg :exponents :accessor monom-exponents))
61 (:default-initargs :dim 0 :exponents nil))
62
63(defmethod print-object ((m monom) stream)
64 (princ (slot-value m 'exponents) stream))
65
66;; If a monomial is redefined as structure with slot EXPONENTS, the function
67;; below can be the BOA constructor.
68(defun make-monom (&key
69 (dimension nil dimension-suppied-p)
70 (initial-exponents nil initial-exponents-supplied-p)
71 (initial-exponent nil initial-exponent-supplied-p)
72 &aux
73 (dim (cond (dimension-suppied-p dimension)
74 (initial-exponents-supplied-p (length initial-exponents))
75 (t (error "You must provide DIMENSION or INITIAL-EXPONENTS"))))
76 (exponents (cond
77 ;; when exponents are supplied
78 (initial-exponents-supplied-p
79 (when (and dimension-suppied-p (/= dimension (length initial-exponents)))
80 (error "INITIAL-EXPONENTS must have length DIMENSION"))
81 (make-array (list dim) :initial-contents initial-exponents
82 :element-type 'exponent))
83 ;; when all exponents are to be identical
84 (initial-exponent-supplied-p
85 (make-array (list dim) :initial-element initial-exponent
86 :element-type 'exponent))
87 ;; otherwise, all exponents are zero
88 (t
89 (make-array (list dim) :element-type 'exponent :initial-element 0)))))
90 "A constructor (factory) of monomials. If DIMENSION is given, a sequence of
91DIMENSION elements of type EXPONENT is constructed, where individual
92elements are the value of INITIAL-EXPONENT, which defaults to 0.
93Alternatively, all elements may be specified as a list
94INITIAL-EXPONENTS."
95 (make-instance 'monom :dim dim :exponents exponents))
96
97;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
98;;
99;; Operations on monomials
100;;
101;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
102
103(defmethod r-dimension ((m monom))
104 (monom-dimension m))
105
106(defmethod r-elt ((m monom) index)
107 "Return the power in the monomial M of variable number INDEX."
108 (with-slots (exponents)
109 m
110 (elt exponents index)))
111
112(defmethod (setf r-elt) (new-value (m monom) index)
113 "Return the power in the monomial M of variable number INDEX."
114 (with-slots (exponents)
115 m
116 (setf (elt exponents index) new-value)))
117
118(defmethod r-total-degree ((m monom) &optional (start 0) (end (r-dimension m)))
119 "Return the todal degree of a monomoal M. Optinally, a range
120of variables may be specified with arguments START and END."
121 (declare (type fixnum start end))
122 (with-slots (exponents)
123 m
124 (reduce #'+ exponents :start start :end end)))
125
126
127(defmethod r-sugar ((m monom) &aux (start 0) (end (r-dimension m)))
128 "Return the sugar of a monomial M. Optinally, a range
129of variables may be specified with arguments START and END."
130 (declare (type fixnum start end))
131 (r-total-degree m start end))
132
133(defmethod r* ((m1 monom) (m2 monom))
134 "Multiply monomial M1 by monomial M2."
135 (with-slots ((exponents1 exponents) dim)
136 m1
137 (with-slots ((exponents2 exponents))
138 m2
139 (let* ((exponents (copy-seq exponents1)))
140 (map-into exponents #'+ exponents1 exponents2)
141 (make-instance 'monom :dim dim :exponents exponents)))))
142
143
144
145(defmethod r/ ((m1 monom) (m2 monom))
146 "Divide monomial M1 by monomial M2."
147 (with-slots ((exponents1 exponents))
148 m1
149 (with-slots ((exponents2 exponents))
150 m2
151 (let* ((exponents (copy-seq exponents1))
152 (dim (reduce #'+ exponents)))
153 (map-into exponents #'- exponents1 exponents2)
154 (make-instance 'monom :dim dim :exponents exponents)))))
155
156(defmethod r-divides-p ((m1 monom) (m2 monom))
157 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
158 (with-slots ((exponents1 exponents))
159 m1
160 (with-slots ((exponents2 exponents))
161 m2
162 (every #'<= exponents1 exponents2))))
163
164
165(defmethod r-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
166 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
167 (every #'(lambda (x y z) (<= x (max y z)))
168 m1 m2 m3))
169
170
171(defmethod r-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
172 "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
173 (declare (type monom m1 m2 m3 m4))
174 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
175 m1 m2 m3 m4))
176
177(defmethod r-lcm-equal-lcm-p (m1 m2 m3 m4)
178 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
179 (with-slots ((exponents1 exponents))
180 m1
181 (with-slots ((exponents2 exponents))
182 m2
183 (with-slots ((exponents3 exponents))
184 m3
185 (with-slots ((exponents4 exponents))
186 m4
187 (every
188 #'(lambda (x y z w) (= (max x y) (max z w)))
189 exponents1 exponents2 exponents3 exponents4))))))
190
191(defmethod r-divisible-by-p ((m1 monom) (m2 monom))
192 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
193 (with-slots ((exponents1 exponents))
194 m1
195 (with-slots ((exponents2 exponents))
196 m2
197 (every #'>= exponents1 exponents2))))
198
199(defmethod r-rel-prime-p ((m1 monom) (m2 monom))
200 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
201 (with-slots ((exponents1 exponents))
202 m1
203 (with-slots ((exponents2 exponents))
204 m2
205 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
206
207
208(defmethod r-equalp ((m1 monom) (m2 monom))
209 "Returns T if two monomials M1 and M2 are equal."
210 (with-slots ((exponents1 exponents))
211 m1
212 (with-slots ((exponents2 exponents))
213 m2
214 (every #'= exponents1 exponents2))))
215
216(defmethod r-lcm ((m1 monom) (m2 monom))
217 "Returns least common multiple of monomials M1 and M2."
218 (with-slots ((exponents1 exponents))
219 m1
220 (with-slots ((exponents2 exponents))
221 m2
222 (let* ((exponents (copy-seq exponents1))
223 (dim (reduce #'+ exponents)))
224 (map-into exponents #'max exponents1 exponents2)
225 (make-instance 'monom :dim dim :exponents exponents)))))
226
227
228(defmethod r-gcd ((m1 monom) (m2 monom))
229 "Returns greatest common divisor of monomials M1 and M2."
230 (with-slots ((exponents1 exponents))
231 m1
232 (with-slots ((exponents2 exponents))
233 m2
234 (let* ((exponents (copy-seq exponents1))
235 (dim (reduce #'+ exponents)))
236 (map-into exponents #'min exponents1 exponents2)
237 (make-instance 'monom :dim dim :exponents exponents)))))
238
239(defmethod r-depends-p ((m monom) k)
240 "Return T if the monomial M depends on variable number K."
241 (declare (type fixnum k))
242 (with-slots (exponents)
243 m
244 (plusp (elt exponents k))))
245
246(defmethod r-tensor-product ((m1 monom) (m2 monom)
247 &aux (dim (+ (r-dimension m1) (r-dimension m2))))
248 (declare (fixnum dim))
249 (with-slots ((exponents1 exponents))
250 m1
251 (with-slots ((exponents2 exponents))
252 m2
253 (make-instance 'monom
254 :dim dim
255 :exponents (concatenate 'vector exponents1 exponents2)))))
256
257(defmethod r-contract ((m monom) k)
258 "Drop the first K variables in monomial M."
259 (declare (fixnum k))
260 (with-slots (dim exponents)
261 m
262 (setf dim (- dim k)
263 exponents (subseq exponents k))))
264
265(defun make-monom-variable (nvars pos &optional (power 1)
266 &aux (m (make-monom :dimension nvars)))
267 "Construct a monomial in the polynomial ring
268RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
269which represents a single variable. It assumes number of variables
270NVARS and the variable is at position POS. Optionally, the variable
271may appear raised to power POWER. "
272 (declare (type fixnum nvars pos power) (type monom m))
273 (with-slots (exponents)
274 m
275 (setf (elt exponents pos) power)
276 m))
277
278(defmethod r->list ((m monom))
279 "A human-readable representation of a monomial M as a list of exponents."
280 (coerce (monom-exponents m) 'list))
Note: See TracBrowser for help on using the repository browser.