close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 2167

Last change on this file since 2167 was 2167, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 9.7 KB
RevLine 
[1201]1;;; -*- Mode: Lisp -*-
[81]2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
[418]22;;----------------------------------------------------------------
23;; This package implements BASIC OPERATIONS ON MONOMIALS
24;;----------------------------------------------------------------
25;; DATA STRUCTURES: Conceptually, monomials can be represented as lists:
26;;
27;; monom: (n1 n2 ... nk) where ni are non-negative integers
28;;
29;; However, lists may be implemented as other sequence types,
30;; so the flexibility to change the representation should be
31;; maintained in the code to use general operations on sequences
32;; whenever possible. The optimization for the actual representation
33;; should be left to declarations and the compiler.
34;;----------------------------------------------------------------
35;; EXAMPLES: Suppose that variables are x and y. Then
36;;
[714]37;; Monom x*y^2 ---> (1 2)
[418]38;;
39;;----------------------------------------------------------------
40
[1610]41(defpackage "MONOM"
[2025]42 (:use :cl :ring)
[422]43 (:export "MONOM"
[423]44 "EXPONENT"
[2124]45 "MAKE-MONOM"
[2125]46 "MONOM-DIMENSION"
[2124]47 "MONOM-EXPONENTS"
48 "MAKE-MONOM-VARIABLE"))
[81]49
[1610]50(in-package :monom)
[48]51
[1925]52(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
[1923]53
[48]54(deftype exponent ()
55 "Type of exponent in a monomial."
56 'fixnum)
57
[2022]58(defclass monom ()
[2125]59 ((dim :initarg :dim :accessor monom-dimension)
60 (exponents :initarg :exponents :accessor monom-exponents))
[2022]61 (:default-initargs :dim 0 :exponents nil))
[880]62
[2028]63(defmethod print-object ((m monom) stream)
[2036]64 (princ (slot-value m 'exponents) stream))
[2027]65
[884]66;; If a monomial is redefined as structure with slot EXPONENTS, the function
67;; below can be the BOA constructor.
[873]68(defun make-monom (&key
69 (dimension nil dimension-suppied-p)
70 (initial-exponents nil initial-exponents-supplied-p)
71 (initial-exponent nil initial-exponent-supplied-p)
72 &aux
73 (dim (cond (dimension-suppied-p dimension)
74 (initial-exponents-supplied-p (length initial-exponents))
[2028]75 (t (error "You must provide DIMENSION or INITIAL-EXPONENTS"))))
[2022]76 (exponents (cond
77 ;; when exponents are supplied
78 (initial-exponents-supplied-p
79 (make-array (list dim) :initial-contents initial-exponents
80 :element-type 'exponent))
81 ;; when all exponents are to be identical
82 (initial-exponent-supplied-p
83 (make-array (list dim) :initial-element initial-exponent
84 :element-type 'exponent))
85 ;; otherwise, all exponents are zero
86 (t
87 (make-array (list dim) :element-type 'exponent :initial-element 0)))))
[1600]88 "A constructor (factory) of monomials. If DIMENSION is given, a sequence of
[1599]89DIMENSION elements of type EXPONENT is constructed, where individual
90elements are the value of INITIAL-EXPONENT, which defaults to 0.
91Alternatively, all elements may be specified as a list
92INITIAL-EXPONENTS."
[2022]93 (make-instance 'monom :dim dim :exponents exponents))
[717]94
[48]95;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
96;;
97;; Operations on monomials
98;;
99;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
100
[2143]101(defmethod r-dimension ((m monom))
[2126]102 (monom-dimension m))
[745]103
[2143]104(defmethod r-elt ((m monom) index)
[48]105 "Return the power in the monomial M of variable number INDEX."
[2023]106 (with-slots (exponents)
107 m
[2154]108 (elt exponents index)))
[48]109
[2160]110(defmethod (setf r-elt) (new-value (m monom) index)
[2023]111 "Return the power in the monomial M of variable number INDEX."
112 (with-slots (exponents)
113 m
[2154]114 (setf (elt exponents index) new-value)))
[2023]115
[2149]116(defmethod r-total-degree ((m monom) &optional (start 0) (end (r-dimension m)))
[48]117 "Return the todal degree of a monomoal M. Optinally, a range
118of variables may be specified with arguments START and END."
[2023]119 (declare (type fixnum start end))
120 (with-slots (exponents)
121 m
[2154]122 (reduce #'+ exponents :start start :end end)))
[48]123
[2064]124
[2149]125(defmethod r-sugar ((m monom) &aux (start 0) (end (r-dimension m)))
[48]126 "Return the sugar of a monomial M. Optinally, a range
127of variables may be specified with arguments START and END."
[2032]128 (declare (type fixnum start end))
[2155]129 (r-total-degree m start end))
[48]130
[2144]131(defmethod r* ((m1 monom) (m2 monom))
[2072]132 "Multiply monomial M1 by monomial M2."
[2167]133 (with-slots ((exponents1 exponents) dimension)
[2038]134 m1
135 (with-slots ((exponents2 exponents))
136 m2
[2167]137 (let* ((exponents (copy-seq exponents1)))
[2154]138 (map-into exponents #'+ exponents1 exponents2)
[2167]139 (make-instance 'monom :dim dimension :exponents exponents)))))
[2038]140
[2069]141
142
[2144]143(defmethod r/ ((m1 monom) (m2 monom))
[1896]144 "Divide monomial M1 by monomial M2."
[2037]145 (with-slots ((exponents1 exponents))
[2034]146 m1
[2037]147 (with-slots ((exponents2 exponents))
[2034]148 m2
149 (let* ((exponents (copy-seq exponents1))
[2154]150 (dim (reduce #'+ exponents)))
151 (map-into exponents #'- exponents1 exponents2)
[2034]152 (make-instance 'monom :dim dim :exponents exponents)))))
[48]153
[2144]154(defmethod r-divides-p ((m1 monom) (m2 monom))
[48]155 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
[2039]156 (with-slots ((exponents1 exponents))
157 m1
158 (with-slots ((exponents2 exponents))
159 m2
160 (every #'<= exponents1 exponents2))))
[48]161
[2075]162
[2144]163(defmethod r-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
[2055]164 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
[875]165 (every #'(lambda (x y z) (<= x (max y z)))
[869]166 m1 m2 m3))
[48]167
[2049]168
[2144]169(defmethod r-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
[48]170 "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
[1890]171 (declare (type monom m1 m2 m3 m4))
[869]172 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
173 m1 m2 m3 m4))
174
[2144]175(defmethod r-lcm-equal-lcm-p (m1 m2 m3 m4)
[2075]176 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
[2076]177 (with-slots (exponents1 exponents)
178 m1
179 (with-slots (exponents2 exponents)
180 m2
181 (with-slots (exponents3 exponents)
182 m3
183 (with-slots (exponents4 exponents)
184 m4
[2077]185 (every
186 #'(lambda (x y z w) (= (max x y) (max z w)))
187 exponents1 exponents2 exponents3 exponents4))))))
[48]188
[2144]189(defmethod r-divisible-by-p ((m1 monom) (m2 monom))
[48]190 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
[2144]191 (with-slots (exponents1 exponents)
192 m1
193 (with-slots (exponents2 exponents)
194 m2
195 (every #'>= exponents1 exponents2))))
[2078]196
[2146]197(defmethod r-rel-prime-p ((m1 monom) (m2 monom))
[48]198 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
[2078]199 (with-slots (exponents1 exponents)
200 m1
201 (with-slots (exponents2 exponents)
202 m2
[2154]203 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
[48]204
[2076]205
[2163]206(defmethod r-equalp ((m1 monom) (m2 monom))
[48]207 "Returns T if two monomials M1 and M2 are equal."
[2079]208 (with-slots (exponents1 exponents)
209 m1
210 (with-slots (exponents2 exponents)
211 m2
212 (every #'= exponents1 exponents2))))
[48]213
[2146]214(defmethod r-lcm ((m1 monom) (m2 monom))
[48]215 "Returns least common multiple of monomials M1 and M2."
[2082]216 (with-slots (exponents1 exponents)
217 m1
218 (with-slots (exponents2 exponents)
219 m2
220 (let* ((exponents (copy-seq exponents1))
[2154]221 (dim (reduce #'+ exponents)))
[2082]222 (map-into exponents #'max exponents1 exponents2)
223 (make-instance 'monom :dim dim :exponents exponents)))))
[48]224
[2080]225
[2146]226(defmethod r-gcd ((m1 monom) (m2 monom))
[48]227 "Returns greatest common divisor of monomials M1 and M2."
[2082]228 (with-slots (exponents1 exponents)
229 m1
230 (with-slots (exponents2 exponents)
231 m2
232 (let* ((exponents (copy-seq exponents1))
[2154]233 (dim (reduce #'+ exponents)))
[2082]234 (map-into exponents #'min exponents1 exponents2)
235 (make-instance 'monom :dim dim :exponents exponents)))))
[48]236
[2146]237(defmethod r-depends-p ((m monom) k)
[48]238 "Return T if the monomial M depends on variable number K."
[2083]239 (declare (type fixnum k))
240 (with-slots (exponents)
241 m
[2154]242 (plusp (elt exponents k))))
[48]243
[2146]244(defmethod r-tensor-product ((m1 monom) (m2 monom)
[2154]245 &aux (dim (+ (r-dimension m1) (r-dimension m2))))
[2085]246 (declare (fixnum dim))
[2087]247 (with-slots (exponents1 exponents)
248 m1
249 (with-slots (exponents2 exponents)
250 m2
[2147]251 (make-instance 'monom
252 :dim dim
253 :exponents (concatenate 'vector exponents1 exponents2)))))
[48]254
[2148]255(defmethod r-contract ((m monom) k)
[1638]256 "Drop the first K variables in monomial M."
[2085]257 (declare (fixnum k))
258 (with-slots (dim exponents)
259 m
260 (setf dim (- dim k)
261 exponents (subseq exponents k))))
[886]262
263(defun make-monom-variable (nvars pos &optional (power 1)
264 &aux (m (make-monom :dimension nvars)))
265 "Construct a monomial in the polynomial ring
266RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
267which represents a single variable. It assumes number of variables
268NVARS and the variable is at position POS. Optionally, the variable
269may appear raised to power POWER. "
[1924]270 (declare (type fixnum nvars pos power) (type monom m))
[2089]271 (with-slots (exponents)
272 m
[2154]273 (setf (elt exponents pos) power)
[2089]274 m))
[1151]275
[2150]276(defmethod r->list ((m monom))
[1152]277 "A human-readable representation of a monomial M as a list of exponents."
[2148]278 (coerce (monom-exponents m) 'list))
Note: See TracBrowser for help on using the repository browser.