close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 2163

Last change on this file since 2163 was 2163, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 9.7 KB
RevLine 
[1201]1;;; -*- Mode: Lisp -*-
[81]2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
[418]22;;----------------------------------------------------------------
23;; This package implements BASIC OPERATIONS ON MONOMIALS
24;;----------------------------------------------------------------
25;; DATA STRUCTURES: Conceptually, monomials can be represented as lists:
26;;
27;; monom: (n1 n2 ... nk) where ni are non-negative integers
28;;
29;; However, lists may be implemented as other sequence types,
30;; so the flexibility to change the representation should be
31;; maintained in the code to use general operations on sequences
32;; whenever possible. The optimization for the actual representation
33;; should be left to declarations and the compiler.
34;;----------------------------------------------------------------
35;; EXAMPLES: Suppose that variables are x and y. Then
36;;
[714]37;; Monom x*y^2 ---> (1 2)
[418]38;;
39;;----------------------------------------------------------------
40
[1610]41(defpackage "MONOM"
[2025]42 (:use :cl :ring)
[422]43 (:export "MONOM"
[423]44 "EXPONENT"
[2124]45 "MAKE-MONOM"
[2125]46 "MONOM-DIMENSION"
[2124]47 "MONOM-EXPONENTS"
48 "MAKE-MONOM-VARIABLE"))
[81]49
[1610]50(in-package :monom)
[48]51
[1925]52(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
[1923]53
[48]54(deftype exponent ()
55 "Type of exponent in a monomial."
56 'fixnum)
57
[2022]58(defclass monom ()
[2125]59 ((dim :initarg :dim :accessor monom-dimension)
60 (exponents :initarg :exponents :accessor monom-exponents))
[2022]61 (:default-initargs :dim 0 :exponents nil))
[880]62
[2028]63(defmethod print-object ((m monom) stream)
[2036]64 (princ (slot-value m 'exponents) stream))
[2027]65
[884]66;; If a monomial is redefined as structure with slot EXPONENTS, the function
67;; below can be the BOA constructor.
[873]68(defun make-monom (&key
69 (dimension nil dimension-suppied-p)
70 (initial-exponents nil initial-exponents-supplied-p)
71 (initial-exponent nil initial-exponent-supplied-p)
72 &aux
73 (dim (cond (dimension-suppied-p dimension)
74 (initial-exponents-supplied-p (length initial-exponents))
[2028]75 (t (error "You must provide DIMENSION or INITIAL-EXPONENTS"))))
[2022]76 (exponents (cond
77 ;; when exponents are supplied
78 (initial-exponents-supplied-p
79 (make-array (list dim) :initial-contents initial-exponents
80 :element-type 'exponent))
81 ;; when all exponents are to be identical
82 (initial-exponent-supplied-p
83 (make-array (list dim) :initial-element initial-exponent
84 :element-type 'exponent))
85 ;; otherwise, all exponents are zero
86 (t
87 (make-array (list dim) :element-type 'exponent :initial-element 0)))))
[1600]88 "A constructor (factory) of monomials. If DIMENSION is given, a sequence of
[1599]89DIMENSION elements of type EXPONENT is constructed, where individual
90elements are the value of INITIAL-EXPONENT, which defaults to 0.
91Alternatively, all elements may be specified as a list
92INITIAL-EXPONENTS."
[2022]93 (make-instance 'monom :dim dim :exponents exponents))
[717]94
[48]95;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
96;;
97;; Operations on monomials
98;;
99;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
100
[2143]101(defmethod r-dimension ((m monom))
[2126]102 (monom-dimension m))
[745]103
[2143]104(defmethod r-elt ((m monom) index)
[48]105 "Return the power in the monomial M of variable number INDEX."
[2023]106 (with-slots (exponents)
107 m
[2154]108 (elt exponents index)))
[48]109
[2160]110(defmethod (setf r-elt) (new-value (m monom) index)
[2023]111 "Return the power in the monomial M of variable number INDEX."
112 (with-slots (exponents)
113 m
[2154]114 (setf (elt exponents index) new-value)))
[2023]115
[2149]116(defmethod r-total-degree ((m monom) &optional (start 0) (end (r-dimension m)))
[48]117 "Return the todal degree of a monomoal M. Optinally, a range
118of variables may be specified with arguments START and END."
[2023]119 (declare (type fixnum start end))
120 (with-slots (exponents)
121 m
[2154]122 (reduce #'+ exponents :start start :end end)))
[48]123
[2064]124
[2149]125(defmethod r-sugar ((m monom) &aux (start 0) (end (r-dimension m)))
[48]126 "Return the sugar of a monomial M. Optinally, a range
127of variables may be specified with arguments START and END."
[2032]128 (declare (type fixnum start end))
[2155]129 (r-total-degree m start end))
[48]130
[2144]131(defmethod r* ((m1 monom) (m2 monom))
[2072]132 "Multiply monomial M1 by monomial M2."
[2038]133 (with-slots ((exponents1 exponents))
134 m1
135 (with-slots ((exponents2 exponents))
136 m2
137 (let* ((exponents (copy-seq exponents1))
[2154]138 (dim (reduce #'+ exponents)))
139 (map-into exponents #'+ exponents1 exponents2)
[2038]140 (make-instance 'monom :dim dim :exponents exponents)))))
141
[2069]142
143
[2144]144(defmethod r/ ((m1 monom) (m2 monom))
[1896]145 "Divide monomial M1 by monomial M2."
[2037]146 (with-slots ((exponents1 exponents))
[2034]147 m1
[2037]148 (with-slots ((exponents2 exponents))
[2034]149 m2
150 (let* ((exponents (copy-seq exponents1))
[2154]151 (dim (reduce #'+ exponents)))
152 (map-into exponents #'- exponents1 exponents2)
[2034]153 (make-instance 'monom :dim dim :exponents exponents)))))
[48]154
[2144]155(defmethod r-divides-p ((m1 monom) (m2 monom))
[48]156 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
[2039]157 (with-slots ((exponents1 exponents))
158 m1
159 (with-slots ((exponents2 exponents))
160 m2
161 (every #'<= exponents1 exponents2))))
[48]162
[2075]163
[2144]164(defmethod r-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom))
[2055]165 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
[875]166 (every #'(lambda (x y z) (<= x (max y z)))
[869]167 m1 m2 m3))
[48]168
[2049]169
[2144]170(defmethod r-lcm-divides-lcm-p ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
[48]171 "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
[1890]172 (declare (type monom m1 m2 m3 m4))
[869]173 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
174 m1 m2 m3 m4))
175
[2144]176(defmethod r-lcm-equal-lcm-p (m1 m2 m3 m4)
[2075]177 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
[2076]178 (with-slots (exponents1 exponents)
179 m1
180 (with-slots (exponents2 exponents)
181 m2
182 (with-slots (exponents3 exponents)
183 m3
184 (with-slots (exponents4 exponents)
185 m4
[2077]186 (every
187 #'(lambda (x y z w) (= (max x y) (max z w)))
188 exponents1 exponents2 exponents3 exponents4))))))
[48]189
[2144]190(defmethod r-divisible-by-p ((m1 monom) (m2 monom))
[48]191 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
[2144]192 (with-slots (exponents1 exponents)
193 m1
194 (with-slots (exponents2 exponents)
195 m2
196 (every #'>= exponents1 exponents2))))
[2078]197
[2146]198(defmethod r-rel-prime-p ((m1 monom) (m2 monom))
[48]199 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
[2078]200 (with-slots (exponents1 exponents)
201 m1
202 (with-slots (exponents2 exponents)
203 m2
[2154]204 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2))))
[48]205
[2076]206
[2163]207(defmethod r-equalp ((m1 monom) (m2 monom))
[48]208 "Returns T if two monomials M1 and M2 are equal."
[2079]209 (with-slots (exponents1 exponents)
210 m1
211 (with-slots (exponents2 exponents)
212 m2
213 (every #'= exponents1 exponents2))))
[48]214
[2146]215(defmethod r-lcm ((m1 monom) (m2 monom))
[48]216 "Returns least common multiple of monomials M1 and M2."
[2082]217 (with-slots (exponents1 exponents)
218 m1
219 (with-slots (exponents2 exponents)
220 m2
221 (let* ((exponents (copy-seq exponents1))
[2154]222 (dim (reduce #'+ exponents)))
[2082]223 (map-into exponents #'max exponents1 exponents2)
224 (make-instance 'monom :dim dim :exponents exponents)))))
[48]225
[2080]226
[2146]227(defmethod r-gcd ((m1 monom) (m2 monom))
[48]228 "Returns greatest common divisor of monomials M1 and M2."
[2082]229 (with-slots (exponents1 exponents)
230 m1
231 (with-slots (exponents2 exponents)
232 m2
233 (let* ((exponents (copy-seq exponents1))
[2154]234 (dim (reduce #'+ exponents)))
[2082]235 (map-into exponents #'min exponents1 exponents2)
236 (make-instance 'monom :dim dim :exponents exponents)))))
[48]237
[2146]238(defmethod r-depends-p ((m monom) k)
[48]239 "Return T if the monomial M depends on variable number K."
[2083]240 (declare (type fixnum k))
241 (with-slots (exponents)
242 m
[2154]243 (plusp (elt exponents k))))
[48]244
[2146]245(defmethod r-tensor-product ((m1 monom) (m2 monom)
[2154]246 &aux (dim (+ (r-dimension m1) (r-dimension m2))))
[2085]247 (declare (fixnum dim))
[2087]248 (with-slots (exponents1 exponents)
249 m1
250 (with-slots (exponents2 exponents)
251 m2
[2147]252 (make-instance 'monom
253 :dim dim
254 :exponents (concatenate 'vector exponents1 exponents2)))))
[48]255
[2148]256(defmethod r-contract ((m monom) k)
[1638]257 "Drop the first K variables in monomial M."
[2085]258 (declare (fixnum k))
259 (with-slots (dim exponents)
260 m
261 (setf dim (- dim k)
262 exponents (subseq exponents k))))
[886]263
264(defun make-monom-variable (nvars pos &optional (power 1)
265 &aux (m (make-monom :dimension nvars)))
266 "Construct a monomial in the polynomial ring
267RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
268which represents a single variable. It assumes number of variables
269NVARS and the variable is at position POS. Optionally, the variable
270may appear raised to power POWER. "
[1924]271 (declare (type fixnum nvars pos power) (type monom m))
[2089]272 (with-slots (exponents)
273 m
[2154]274 (setf (elt exponents pos) power)
[2089]275 m))
[1151]276
[2150]277(defmethod r->list ((m monom))
[1152]278 "A human-readable representation of a monomial M as a list of exponents."
[2148]279 (coerce (monom-exponents m) 'list))
Note: See TracBrowser for help on using the repository browser.