1 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*-
|
---|
2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
3 | ;;;
|
---|
4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
5 | ;;;
|
---|
6 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
7 | ;;; it under the terms of the GNU General Public License as published by
|
---|
8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
9 | ;;; (at your option) any later version.
|
---|
10 | ;;;
|
---|
11 | ;;; This program is distributed in the hope that it will be useful,
|
---|
12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | ;;; GNU General Public License for more details.
|
---|
15 | ;;;
|
---|
16 | ;;; You should have received a copy of the GNU General Public License
|
---|
17 | ;;; along with this program; if not, write to the Free Software
|
---|
18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
19 | ;;;
|
---|
20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
21 |
|
---|
22 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
23 | ;;
|
---|
24 | ;; Operations in ideal theory
|
---|
25 | ;;
|
---|
26 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
27 |
|
---|
28 | ;; Does the term depend on variable K?
|
---|
29 | (defun term-depends-p (term k)
|
---|
30 | "Return T if the term TERM depends on variable number K."
|
---|
31 | (monom-depends-p (term-monom term) k))
|
---|
32 |
|
---|
33 | ;; Does the polynomial P depend on variable K?
|
---|
34 | (defun poly-depends-p (p k)
|
---|
35 | "Return T if the term polynomial P depends on variable number K."
|
---|
36 | (some #'(lambda (term) (term-depends-p term k)) (poly-termlist p)))
|
---|
37 |
|
---|
38 | (defun ring-intersection (plist k)
|
---|
39 | "This function assumes that polynomial list PLIST is a Grobner basis
|
---|
40 | and it calculates the intersection with the ring R[x[k+1],...,x[n]], i.e.
|
---|
41 | it discards polynomials which depend on variables x[0], x[1], ..., x[k]."
|
---|
42 | (dotimes (i k plist)
|
---|
43 | (setf plist
|
---|
44 | (remove-if #'(lambda (p)
|
---|
45 | (poly-depends-p p i))
|
---|
46 | plist))))
|
---|
47 |
|
---|
48 | (defun elimination-ideal (ring flist k
|
---|
49 | &optional (top-reduction-only $poly_top_reduction_only) (start 0)
|
---|
50 | &aux (*monomial-order*
|
---|
51 | (or *elimination-order*
|
---|
52 | (elimination-order k))))
|
---|
53 | (ring-intersection (reduced-grobner ring flist start top-reduction-only) k))
|
---|
54 |
|
---|
55 | (defun colon-ideal (ring f g &optional (top-reduction-only $poly_top_reduction_only))
|
---|
56 | "Returns the reduced Grobner basis of the colon ideal Id(F):Id(G),
|
---|
57 | where F and G are two lists of polynomials. The colon ideal I:J is
|
---|
58 | defined as the set of polynomials H such that for all polynomials W in
|
---|
59 | J the polynomial W*H belongs to I."
|
---|
60 | (cond
|
---|
61 | ((endp g)
|
---|
62 | ;;Id(G) consists of 0 only so W*0=0 belongs to Id(F)
|
---|
63 | (if (every #'poly-zerop f)
|
---|
64 | (error "First ideal must be non-zero.")
|
---|
65 | (list (make-poly
|
---|
66 | (list (make-term
|
---|
67 | (make-monom (monom-dimension (poly-lm (find-if-not #'poly-zerop f)))
|
---|
68 | :initial-element 0)
|
---|
69 | (funcall (ring-unit ring))))))))
|
---|
70 | ((endp (cdr g))
|
---|
71 | (colon-ideal-1 ring f (car g) top-reduction-only))
|
---|
72 | (t
|
---|
73 | (ideal-intersection ring
|
---|
74 | (colon-ideal-1 ring f (car g) top-reduction-only)
|
---|
75 | (colon-ideal ring f (rest g) top-reduction-only)
|
---|
76 | top-reduction-only))))
|
---|
77 |
|
---|
78 | (defun colon-ideal-1 (ring f g &optional (top-reduction-only $poly_top_reduction_only))
|
---|
79 | "Returns the reduced Grobner basis of the colon ideal Id(F):Id({G}), where
|
---|
80 | F is a list of polynomials and G is a polynomial."
|
---|
81 | (mapcar #'(lambda (x) (poly-exact-divide ring x g)) (ideal-intersection ring f (list g) top-reduction-only)))
|
---|
82 |
|
---|
83 |
|
---|
84 | (defun ideal-intersection (ring f g &optional (top-reduction-only $poly_top_reduction_only)
|
---|
85 | &aux (*monomial-order* (or *elimination-order*
|
---|
86 | #'elimination-order-1)))
|
---|
87 | (mapcar #'poly-contract
|
---|
88 | (ring-intersection
|
---|
89 | (reduced-grobner
|
---|
90 | ring
|
---|
91 | (append (mapcar #'(lambda (p) (poly-extend p (make-monom 1 :initial-element 1))) f)
|
---|
92 | (mapcar #'(lambda (p)
|
---|
93 | (poly-append (poly-extend (poly-uminus ring p)
|
---|
94 | (make-monom 1 :initial-element 1))
|
---|
95 | (poly-extend p)))
|
---|
96 | g))
|
---|
97 | 0
|
---|
98 | top-reduction-only)
|
---|
99 | 1)))
|
---|
100 |
|
---|
101 | (defun poly-lcm (ring f g)
|
---|
102 | "Return LCM (least common multiple) of two polynomials F and G.
|
---|
103 | The polynomials must be ordered according to monomial order PRED
|
---|
104 | and their coefficients must be compatible with the RING structure
|
---|
105 | defined in the COEFFICIENT-RING package."
|
---|
106 | (cond
|
---|
107 | ((poly-zerop f) f)
|
---|
108 | ((poly-zerop g) g)
|
---|
109 | ((and (endp (cdr (poly-termlist f))) (endp (cdr (poly-termlist g))))
|
---|
110 | (let ((m (monom-lcm (poly-lm f) (poly-lm g))))
|
---|
111 | (make-poly-from-termlist (list (make-term m (funcall (ring-lcm ring) (poly-lc f) (poly-lc g)))))))
|
---|
112 | (t
|
---|
113 | (multiple-value-bind (f f-cont)
|
---|
114 | (poly-primitive-part ring f)
|
---|
115 | (multiple-value-bind (g g-cont)
|
---|
116 | (poly-primitive-part ring g)
|
---|
117 | (scalar-times-poly
|
---|
118 | ring
|
---|
119 | (funcall (ring-lcm ring) f-cont g-cont)
|
---|
120 | (poly-primitive-part ring (car (ideal-intersection ring (list f) (list g) nil)))))))))
|
---|
121 |
|
---|
122 | ;; Do two Grobner bases yield the same ideal?
|
---|
123 | (defun grobner-equal (ring g1 g2)
|
---|
124 | "Returns T if two lists of polynomials G1 and G2, assumed to be Grobner bases,
|
---|
125 | generate the same ideal, and NIL otherwise."
|
---|
126 | (and (grobner-subsetp ring g1 g2) (grobner-subsetp ring g2 g1)))
|
---|
127 |
|
---|
128 | (defun grobner-subsetp (ring g1 g2)
|
---|
129 | "Returns T if a list of polynomials G1 generates
|
---|
130 | an ideal contained in the ideal generated by a polynomial list G2,
|
---|
131 | both G1 and G2 assumed to be Grobner bases. Returns NIL otherwise."
|
---|
132 | (every #'(lambda (p) (grobner-member ring p g2)) g1))
|
---|
133 |
|
---|
134 | (defun grobner-member (ring p g)
|
---|
135 | "Returns T if a polynomial P belongs to the ideal generated by the
|
---|
136 | polynomial list G, which is assumed to be a Grobner basis. Returns NIL otherwise."
|
---|
137 | (poly-zerop (normal-form ring p g nil)))
|
---|
138 |
|
---|
139 | ;; Calculate F : p^inf
|
---|
140 | (defun ideal-saturation-1 (ring f p start &optional (top-reduction-only $poly_top_reduction_only)
|
---|
141 | &aux (*monomial-order* (or *elimination-order*
|
---|
142 | #'elimination-order-1)))
|
---|
143 | "Returns the reduced Grobner basis of the saturation of the ideal
|
---|
144 | generated by a polynomial list F in the ideal generated by a single
|
---|
145 | polynomial P. The saturation ideal is defined as the set of
|
---|
146 | polynomials H such for some natural number n (* (EXPT P N) H) is in the ideal
|
---|
147 | F. Geometrically, over an algebraically closed field, this is the set
|
---|
148 | of polynomials in the ideal generated by F which do not identically
|
---|
149 | vanish on the variety of P."
|
---|
150 | (mapcar
|
---|
151 | #'poly-contract
|
---|
152 | (ring-intersection
|
---|
153 | (reduced-grobner
|
---|
154 | ring
|
---|
155 | (saturation-extension-1 ring f p)
|
---|
156 | start top-reduction-only)
|
---|
157 | 1)))
|
---|
158 |
|
---|
159 |
|
---|
160 |
|
---|
161 | ;; Calculate F : p1^inf : p2^inf : ... : ps^inf
|
---|
162 | (defun ideal-polysaturation-1 (ring f plist start &optional (top-reduction-only $poly_top_reduction_only))
|
---|
163 | "Returns the reduced Grobner basis of the ideal obtained by a
|
---|
164 | sequence of successive saturations in the polynomials
|
---|
165 | of the polynomial list PLIST of the ideal generated by the
|
---|
166 | polynomial list F."
|
---|
167 | (cond
|
---|
168 | ((endp plist) (reduced-grobner ring f start top-reduction-only))
|
---|
169 | (t (let ((g (ideal-saturation-1 ring f (car plist) start top-reduction-only)))
|
---|
170 | (ideal-polysaturation-1 ring g (rest plist) (length g) top-reduction-only)))))
|
---|
171 |
|
---|
172 | (defun ideal-saturation (ring f g start &optional (top-reduction-only $poly_top_reduction_only)
|
---|
173 | &aux
|
---|
174 | (k (length g))
|
---|
175 | (*monomial-order* (or *elimination-order*
|
---|
176 | (elimination-order k))))
|
---|
177 | "Returns the reduced Grobner basis of the saturation of the ideal
|
---|
178 | generated by a polynomial list F in the ideal generated a polynomial
|
---|
179 | list G. The saturation ideal is defined as the set of polynomials H
|
---|
180 | such for some natural number n and some P in the ideal generated by G
|
---|
181 | the polynomial P**N * H is in the ideal spanned by F. Geometrically,
|
---|
182 | over an algebraically closed field, this is the set of polynomials in
|
---|
183 | the ideal generated by F which do not identically vanish on the
|
---|
184 | variety of G."
|
---|
185 | (mapcar
|
---|
186 | #'(lambda (q) (poly-contract q k))
|
---|
187 | (ring-intersection
|
---|
188 | (reduced-grobner ring
|
---|
189 | (polysaturation-extension ring f g)
|
---|
190 | start
|
---|
191 | top-reduction-only)
|
---|
192 | k)))
|
---|
193 |
|
---|
194 | (defun ideal-polysaturation (ring f ideal-list start &optional (top-reduction-only $poly_top_reduction_only))
|
---|
195 | "Returns the reduced Grobner basis of the ideal obtained by a
|
---|
196 | successive applications of IDEAL-SATURATION to F and lists of
|
---|
197 | polynomials in the list IDEAL-LIST."
|
---|
198 | (cond
|
---|
199 | ((endp ideal-list) f)
|
---|
200 | (t (let ((h (ideal-saturation ring f (car ideal-list) start top-reduction-only)))
|
---|
201 | (ideal-polysaturation ring h (rest ideal-list) (length h) top-reduction-only)))))
|
---|