close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/grobner.lisp@ 67

Last change on this file since 67 was 66, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 36.4 KB
Line 
1;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(in-package :maxima)
23
24(macsyma-module cgb-maxima)
25
26(eval-when
27 #+gcl (load eval)
28 #-gcl (:load-toplevel :execute)
29 (format t "~&Loading maxima-grobner ~a ~a~%"
30 "$Revision: 2.0 $" "$Date: 2015/06/02 0:34:17 $"))
31
32;;FUNCTS is loaded because it contains the definition of LCM
33($load "functs")
34
35
36
37
38
39
40;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
41;;
42;; Global switches
43;; (Can be used in Maxima just fine)
44;;
45;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
46
47(defmvar $poly_monomial_order '$lex
48 "This switch controls which monomial order is used in polynomial
49and Grobner basis calculations. If not set, LEX will be used")
50
51(defmvar $poly_coefficient_ring '$expression_ring
52 "This switch indicates the coefficient ring of the polynomials
53that will be used in grobner calculations. If not set, Maxima's
54general expression ring will be used. This variable may be set
55to RING_OF_INTEGERS if desired.")
56
57(defmvar $poly_primary_elimination_order nil
58 "Name of the default order for eliminated variables in elimination-based functions.
59If not set, LEX will be used.")
60
61(defmvar $poly_secondary_elimination_order nil
62 "Name of the default order for kept variables in elimination-based functions.
63If not set, LEX will be used.")
64
65(defmvar $poly_elimination_order nil
66 "Name of the default elimination order used in elimination calculations.
67If set, it overrides the settings in variables POLY_PRIMARY_ELIMINATION_ORDER
68and SECONDARY_ELIMINATION_ORDER. The user must ensure that this is a true
69elimination order valid for the number of eliminated variables.")
70
71(defmvar $poly_return_term_list nil
72 "If set to T, all functions in this package will return each polynomial as a
73list of terms in the current monomial order rather than a Maxima general expression.")
74
75(defmvar $poly_grobner_debug nil
76 "If set to TRUE, produce debugging and tracing output.")
77
78(defmvar $poly_grobner_algorithm '$buchberger
79 "The name of the algorithm used to find grobner bases.")
80
81(defmvar $poly_top_reduction_only nil
82 "If not FALSE, use top reduction only whenever possible.
83Top reduction means that division algorithm stops after the first reduction.")
84
85
86
87;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
88;;
89;; Coefficient ring operations
90;;
91;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
92;;
93;; These are ALL operations that are performed on the coefficients by
94;; the package, and thus the coefficient ring can be changed by merely
95;; redefining these operations.
96;;
97;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
98
99(defstruct (ring)
100 (parse #'identity :type function)
101 (unit #'identity :type function)
102 (zerop #'identity :type function)
103 (add #'identity :type function)
104 (sub #'identity :type function)
105 (uminus #'identity :type function)
106 (mul #'identity :type function)
107 (div #'identity :type function)
108 (lcm #'identity :type function)
109 (ezgcd #'identity :type function)
110 (gcd #'identity :type function))
111
112(defparameter *ring-of-integers*
113 (make-ring
114 :parse #'identity
115 :unit #'(lambda () 1)
116 :zerop #'zerop
117 :add #'+
118 :sub #'-
119 :uminus #'-
120 :mul #'*
121 :div #'/
122 :lcm #'lcm
123 :ezgcd #'(lambda (x y &aux (c (gcd x y))) (values c (/ x c) (/ y c)))
124 :gcd #'gcd)
125 "The ring of integers.")
126
127
128
129;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
130;;
131;; This is how we perform operations on coefficients
132;; using Maxima functions.
133;;
134;; Functions and macros dealing with internal representation structure
135;;
136;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
137
138
139
140
141;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
142;;
143;; Low-level polynomial arithmetic done on
144;; lists of terms
145;;
146;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
147
148(defmacro termlist-lt (p) `(car ,p))
149(defun termlist-lm (p) (term-monom (termlist-lt p)))
150(defun termlist-lc (p) (term-coeff (termlist-lt p)))
151
152(define-modify-macro scalar-mul (c) coeff-mul)
153
154(defun scalar-times-termlist (ring c p)
155 "Multiply scalar C by a polynomial P. This function works
156even if there are divisors of 0."
157 (mapcan
158 #'(lambda (term)
159 (let ((c1 (funcall (ring-mul ring) c (term-coeff term))))
160 (unless (funcall (ring-zerop ring) c1)
161 (list (make-term (term-monom term) c1)))))
162 p))
163
164
165(defun term-mul (ring term1 term2)
166 "Returns (LIST TERM) wheter TERM is the product of the terms TERM1 TERM2,
167or NIL when the product is 0. This definition takes care of divisors of 0
168in the coefficient ring."
169 (let ((c (funcall (ring-mul ring) (term-coeff term1) (term-coeff term2))))
170 (unless (funcall (ring-zerop ring) c)
171 (list (make-term (monom-mul (term-monom term1) (term-monom term2)) c)))))
172
173(defun term-times-termlist (ring term f)
174 (declare (type ring ring))
175 (mapcan #'(lambda (term-f) (term-mul ring term term-f)) f))
176
177(defun termlist-times-term (ring f term)
178 (mapcan #'(lambda (term-f) (term-mul ring term-f term)) f))
179
180(defun monom-times-term (m term)
181 (make-term (monom-mul m (term-monom term)) (term-coeff term)))
182
183(defun monom-times-termlist (m f)
184 (cond
185 ((null f) nil)
186 (t
187 (mapcar #'(lambda (x) (monom-times-term m x)) f))))
188
189(defun termlist-uminus (ring f)
190 (mapcar #'(lambda (x)
191 (make-term (term-monom x) (funcall (ring-uminus ring) (term-coeff x))))
192 f))
193
194(defun termlist-add (ring p q)
195 (declare (type list p q))
196 (do (r)
197 ((cond
198 ((endp p)
199 (setf r (revappend r q)) t)
200 ((endp q)
201 (setf r (revappend r p)) t)
202 (t
203 (multiple-value-bind
204 (lm-greater lm-equal)
205 (monomial-order (termlist-lm p) (termlist-lm q))
206 (cond
207 (lm-equal
208 (let ((s (funcall (ring-add ring) (termlist-lc p) (termlist-lc q))))
209 (unless (funcall (ring-zerop ring) s) ;check for cancellation
210 (setf r (cons (make-term (termlist-lm p) s) r)))
211 (setf p (cdr p) q (cdr q))))
212 (lm-greater
213 (setf r (cons (car p) r)
214 p (cdr p)))
215 (t (setf r (cons (car q) r)
216 q (cdr q)))))
217 nil))
218 r)))
219
220(defun termlist-sub (ring p q)
221 (declare (type list p q))
222 (do (r)
223 ((cond
224 ((endp p)
225 (setf r (revappend r (termlist-uminus ring q)))
226 t)
227 ((endp q)
228 (setf r (revappend r p))
229 t)
230 (t
231 (multiple-value-bind
232 (mgreater mequal)
233 (monomial-order (termlist-lm p) (termlist-lm q))
234 (cond
235 (mequal
236 (let ((s (funcall (ring-sub ring) (termlist-lc p) (termlist-lc q))))
237 (unless (funcall (ring-zerop ring) s) ;check for cancellation
238 (setf r (cons (make-term (termlist-lm p) s) r)))
239 (setf p (cdr p) q (cdr q))))
240 (mgreater
241 (setf r (cons (car p) r)
242 p (cdr p)))
243 (t (setf r (cons (make-term (termlist-lm q) (funcall (ring-uminus ring) (termlist-lc q))) r)
244 q (cdr q)))))
245 nil))
246 r)))
247
248;; Multiplication of polynomials
249;; Non-destructive version
250(defun termlist-mul (ring p q)
251 (cond ((or (endp p) (endp q)) nil) ;p or q is 0 (represented by NIL)
252 ;; If p=p0+p1 and q=q0+q1 then pq=p0q0+p0q1+p1q
253 ((endp (cdr p))
254 (term-times-termlist ring (car p) q))
255 ((endp (cdr q))
256 (termlist-times-term ring p (car q)))
257 (t
258 (let ((head (term-mul ring (termlist-lt p) (termlist-lt q)))
259 (tail (termlist-add ring (term-times-termlist ring (car p) (cdr q))
260 (termlist-mul ring (cdr p) q))))
261 (cond ((null head) tail)
262 ((null tail) head)
263 (t (nconc head tail)))))))
264
265(defun termlist-unit (ring dimension)
266 (declare (fixnum dimension))
267 (list (make-term (make-monom dimension :initial-element 0)
268 (funcall (ring-unit ring)))))
269
270(defun termlist-expt (ring poly n &aux (dim (monom-dimension (termlist-lm poly))))
271 (declare (type fixnum n dim))
272 (cond
273 ((minusp n) (error "termlist-expt: Negative exponent."))
274 ((endp poly) (if (zerop n) (termlist-unit ring dim) nil))
275 (t
276 (do ((k 1 (ash k 1))
277 (q poly (termlist-mul ring q q)) ;keep squaring
278 (p (termlist-unit ring dim) (if (not (zerop (logand k n))) (termlist-mul ring p q) p)))
279 ((> k n) p)
280 (declare (fixnum k))))))
281
282
283
284
285
286
287;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
288;;
289;; Debugging/tracing
290;;
291;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
292(defmacro debug-cgb (&rest args)
293 `(when $poly_grobner_debug (format *terminal-io* ,@args)))
294
295
296
297
298
299;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
300;;
301;; These are provided mostly for debugging purposes To enable
302;; verification of grobner bases with BUCHBERGER-CRITERION, do
303;; (pushnew :grobner-check *features*) and compile/load this file.
304;; With this feature, the calculations will slow down CONSIDERABLY.
305;;
306;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
307
308(defun grobner-test (ring g f)
309 "Test whether G is a Grobner basis and F is contained in G. Return T
310upon success and NIL otherwise."
311 (debug-cgb "~&GROBNER CHECK: ")
312 (let (($poly_grobner_debug nil)
313 (stat1 (buchberger-criterion ring g))
314 (stat2
315 (every #'poly-zerop
316 (makelist (normal-form ring (copy-tree (elt f i)) g nil)
317 (i 0 (1- (length f)))))))
318 (unless stat1 (error "~&Buchberger criterion failed."))
319 (unless stat2
320 (error "~&Original polys not in ideal spanned by Grobner.")))
321 (debug-cgb "~&GROBNER CHECK END")
322 t)
323
324
325;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
326;;
327;; Selection of algorithm and pair heuristic
328;;
329;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
330
331(defun find-grobner-function (algorithm)
332 "Return a function which calculates Grobner basis, based on its
333names. Names currently used are either Lisp symbols, Maxima symbols or
334keywords."
335 (ecase algorithm
336 ((buchberger :buchberger $buchberger) #'buchberger)
337 ((parallel-buchberger :parallel-buchberger $parallel_buchberger) #'parallel-buchberger)
338 ((gebauer-moeller :gebauer_moeller $gebauer_moeller) #'gebauer-moeller)))
339
340(defun grobner (ring f &optional (start 0) (top-reduction-only nil))
341 ;;(setf F (sort F #'< :key #'sugar))
342 (funcall
343 (find-grobner-function $poly_grobner_algorithm)
344 ring f start top-reduction-only))
345
346(defun reduced-grobner (ring f &optional (start 0) (top-reduction-only $poly_top_reduction_only))
347 (reduction ring (grobner ring f start top-reduction-only)))
348
349(defun set-pair-heuristic (method)
350 "Sets up variables *PAIR-KEY-FUNCTION* and *PAIR-ORDER* used
351to determine the priority of critical pairs in the priority queue."
352 (ecase method
353 ((sugar :sugar $sugar)
354 (setf *pair-key-function* #'sugar-pair-key
355 *pair-order* #'sugar-order))
356; ((minimal-mock-spoly :minimal-mock-spoly $minimal_mock_spoly)
357; (setf *pair-key-function* #'mock-spoly
358; *pair-order* #'mock-spoly-order))
359 ((minimal-lcm :minimal-lcm $minimal_lcm)
360 (setf *pair-key-function* #'(lambda (p q)
361 (monom-lcm (poly-lm p) (poly-lm q)))
362 *pair-order* #'reverse-monomial-order))
363 ((minimal-total-degree :minimal-total-degree $minimal_total_degree)
364 (setf *pair-key-function* #'(lambda (p q)
365 (monom-total-degree
366 (monom-lcm (poly-lm p) (poly-lm q))))
367 *pair-order* #'<))
368 ((minimal-length :minimal-length $minimal_length)
369 (setf *pair-key-function* #'(lambda (p q)
370 (+ (poly-length p) (poly-length q)))
371 *pair-order* #'<))))
372
373
374
375;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
376;;
377;; Operations in ideal theory
378;;
379;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
380
381;; Does the term depend on variable K?
382(defun term-depends-p (term k)
383 "Return T if the term TERM depends on variable number K."
384 (monom-depends-p (term-monom term) k))
385
386;; Does the polynomial P depend on variable K?
387(defun poly-depends-p (p k)
388 "Return T if the term polynomial P depends on variable number K."
389 (some #'(lambda (term) (term-depends-p term k)) (poly-termlist p)))
390
391(defun ring-intersection (plist k)
392 "This function assumes that polynomial list PLIST is a Grobner basis
393and it calculates the intersection with the ring R[x[k+1],...,x[n]], i.e.
394it discards polynomials which depend on variables x[0], x[1], ..., x[k]."
395 (dotimes (i k plist)
396 (setf plist
397 (remove-if #'(lambda (p)
398 (poly-depends-p p i))
399 plist))))
400
401(defun elimination-ideal (ring flist k
402 &optional (top-reduction-only $poly_top_reduction_only) (start 0)
403 &aux (*monomial-order*
404 (or *elimination-order*
405 (elimination-order k))))
406 (ring-intersection (reduced-grobner ring flist start top-reduction-only) k))
407
408(defun colon-ideal (ring f g &optional (top-reduction-only $poly_top_reduction_only))
409 "Returns the reduced Grobner basis of the colon ideal Id(F):Id(G),
410where F and G are two lists of polynomials. The colon ideal I:J is
411defined as the set of polynomials H such that for all polynomials W in
412J the polynomial W*H belongs to I."
413 (cond
414 ((endp g)
415 ;;Id(G) consists of 0 only so W*0=0 belongs to Id(F)
416 (if (every #'poly-zerop f)
417 (error "First ideal must be non-zero.")
418 (list (make-poly
419 (list (make-term
420 (make-monom (monom-dimension (poly-lm (find-if-not #'poly-zerop f)))
421 :initial-element 0)
422 (funcall (ring-unit ring))))))))
423 ((endp (cdr g))
424 (colon-ideal-1 ring f (car g) top-reduction-only))
425 (t
426 (ideal-intersection ring
427 (colon-ideal-1 ring f (car g) top-reduction-only)
428 (colon-ideal ring f (rest g) top-reduction-only)
429 top-reduction-only))))
430
431(defun colon-ideal-1 (ring f g &optional (top-reduction-only $poly_top_reduction_only))
432 "Returns the reduced Grobner basis of the colon ideal Id(F):Id({G}), where
433F is a list of polynomials and G is a polynomial."
434 (mapcar #'(lambda (x) (poly-exact-divide ring x g)) (ideal-intersection ring f (list g) top-reduction-only)))
435
436
437(defun ideal-intersection (ring f g &optional (top-reduction-only $poly_top_reduction_only)
438 &aux (*monomial-order* (or *elimination-order*
439 #'elimination-order-1)))
440 (mapcar #'poly-contract
441 (ring-intersection
442 (reduced-grobner
443 ring
444 (append (mapcar #'(lambda (p) (poly-extend p (make-monom 1 :initial-element 1))) f)
445 (mapcar #'(lambda (p)
446 (poly-append (poly-extend (poly-uminus ring p)
447 (make-monom 1 :initial-element 1))
448 (poly-extend p)))
449 g))
450 0
451 top-reduction-only)
452 1)))
453
454(defun poly-lcm (ring f g)
455 "Return LCM (least common multiple) of two polynomials F and G.
456The polynomials must be ordered according to monomial order PRED
457and their coefficients must be compatible with the RING structure
458defined in the COEFFICIENT-RING package."
459 (cond
460 ((poly-zerop f) f)
461 ((poly-zerop g) g)
462 ((and (endp (cdr (poly-termlist f))) (endp (cdr (poly-termlist g))))
463 (let ((m (monom-lcm (poly-lm f) (poly-lm g))))
464 (make-poly-from-termlist (list (make-term m (funcall (ring-lcm ring) (poly-lc f) (poly-lc g)))))))
465 (t
466 (multiple-value-bind (f f-cont)
467 (poly-primitive-part ring f)
468 (multiple-value-bind (g g-cont)
469 (poly-primitive-part ring g)
470 (scalar-times-poly
471 ring
472 (funcall (ring-lcm ring) f-cont g-cont)
473 (poly-primitive-part ring (car (ideal-intersection ring (list f) (list g) nil)))))))))
474
475;; Do two Grobner bases yield the same ideal?
476(defun grobner-equal (ring g1 g2)
477 "Returns T if two lists of polynomials G1 and G2, assumed to be Grobner bases,
478generate the same ideal, and NIL otherwise."
479 (and (grobner-subsetp ring g1 g2) (grobner-subsetp ring g2 g1)))
480
481(defun grobner-subsetp (ring g1 g2)
482 "Returns T if a list of polynomials G1 generates
483an ideal contained in the ideal generated by a polynomial list G2,
484both G1 and G2 assumed to be Grobner bases. Returns NIL otherwise."
485 (every #'(lambda (p) (grobner-member ring p g2)) g1))
486
487(defun grobner-member (ring p g)
488 "Returns T if a polynomial P belongs to the ideal generated by the
489polynomial list G, which is assumed to be a Grobner basis. Returns NIL otherwise."
490 (poly-zerop (normal-form ring p g nil)))
491
492;; Calculate F : p^inf
493(defun ideal-saturation-1 (ring f p start &optional (top-reduction-only $poly_top_reduction_only)
494 &aux (*monomial-order* (or *elimination-order*
495 #'elimination-order-1)))
496 "Returns the reduced Grobner basis of the saturation of the ideal
497generated by a polynomial list F in the ideal generated by a single
498polynomial P. The saturation ideal is defined as the set of
499polynomials H such for some natural number n (* (EXPT P N) H) is in the ideal
500F. Geometrically, over an algebraically closed field, this is the set
501of polynomials in the ideal generated by F which do not identically
502vanish on the variety of P."
503 (mapcar
504 #'poly-contract
505 (ring-intersection
506 (reduced-grobner
507 ring
508 (saturation-extension-1 ring f p)
509 start top-reduction-only)
510 1)))
511
512
513
514;; Calculate F : p1^inf : p2^inf : ... : ps^inf
515(defun ideal-polysaturation-1 (ring f plist start &optional (top-reduction-only $poly_top_reduction_only))
516 "Returns the reduced Grobner basis of the ideal obtained by a
517sequence of successive saturations in the polynomials
518of the polynomial list PLIST of the ideal generated by the
519polynomial list F."
520 (cond
521 ((endp plist) (reduced-grobner ring f start top-reduction-only))
522 (t (let ((g (ideal-saturation-1 ring f (car plist) start top-reduction-only)))
523 (ideal-polysaturation-1 ring g (rest plist) (length g) top-reduction-only)))))
524
525(defun ideal-saturation (ring f g start &optional (top-reduction-only $poly_top_reduction_only)
526 &aux
527 (k (length g))
528 (*monomial-order* (or *elimination-order*
529 (elimination-order k))))
530 "Returns the reduced Grobner basis of the saturation of the ideal
531generated by a polynomial list F in the ideal generated a polynomial
532list G. The saturation ideal is defined as the set of polynomials H
533such for some natural number n and some P in the ideal generated by G
534the polynomial P**N * H is in the ideal spanned by F. Geometrically,
535over an algebraically closed field, this is the set of polynomials in
536the ideal generated by F which do not identically vanish on the
537variety of G."
538 (mapcar
539 #'(lambda (q) (poly-contract q k))
540 (ring-intersection
541 (reduced-grobner ring
542 (polysaturation-extension ring f g)
543 start
544 top-reduction-only)
545 k)))
546
547(defun ideal-polysaturation (ring f ideal-list start &optional (top-reduction-only $poly_top_reduction_only))
548 "Returns the reduced Grobner basis of the ideal obtained by a
549successive applications of IDEAL-SATURATION to F and lists of
550polynomials in the list IDEAL-LIST."
551 (cond
552 ((endp ideal-list) f)
553 (t (let ((h (ideal-saturation ring f (car ideal-list) start top-reduction-only)))
554 (ideal-polysaturation ring h (rest ideal-list) (length h) top-reduction-only)))))
555
556
557
558;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
559;;
560;; Set up the coefficients to be polynomials
561;;
562;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
563
564;; (defun poly-ring (ring vars)
565;; (make-ring
566;; :parse #'(lambda (expr) (poly-eval ring expr vars))
567;; :unit #'(lambda () (poly-unit ring (length vars)))
568;; :zerop #'poly-zerop
569;; :add #'(lambda (x y) (poly-add ring x y))
570;; :sub #'(lambda (x y) (poly-sub ring x y))
571;; :uminus #'(lambda (x) (poly-uminus ring x))
572;; :mul #'(lambda (x y) (poly-mul ring x y))
573;; :div #'(lambda (x y) (poly-exact-divide ring x y))
574;; :lcm #'(lambda (x y) (poly-lcm ring x y))
575;; :ezgcd #'(lambda (x y &aux (gcd (poly-gcd ring x y)))
576;; (values gcd
577;; (poly-exact-divide ring x gcd)
578;; (poly-exact-divide ring y gcd)))
579;; :gcd #'(lambda (x y) (poly-gcd x y))))
580
581
582
583;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
584;;
585;; Conversion from internal to infix form
586;;
587;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
588
589(defun coerce-to-infix (poly-type object vars)
590 (case poly-type
591 (:termlist
592 `(+ ,@(mapcar #'(lambda (term) (coerce-to-infix :term term vars)) object)))
593 (:polynomial
594 (coerce-to-infix :termlist (poly-termlist object) vars))
595 (:poly-list
596 `([ ,@(mapcar #'(lambda (p) (coerce-to-infix :polynomial p vars)) object)))
597 (:term
598 `(* ,(term-coeff object)
599 ,@(mapcar #'(lambda (var power) `(expt ,var ,power))
600 vars (monom-exponents (term-monom object)))))
601 (otherwise
602 object)))
603
604
605
606;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
607;;
608;; Maxima expression ring
609;;
610;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
611
612(defparameter *expression-ring*
613 (make-ring
614 ;;(defun coeff-zerop (expr) (meval1 `(($is) (($equal) ,expr 0))))
615 :parse #'(lambda (expr)
616 (when modulus (setf expr ($rat expr)))
617 expr)
618 :unit #'(lambda () (if modulus ($rat 1) 1))
619 :zerop #'(lambda (expr)
620 ;;When is exactly a maxima expression equal to 0?
621 (cond ((numberp expr)
622 (= expr 0))
623 ((atom expr) nil)
624 (t
625 (case (caar expr)
626 (mrat (eql ($ratdisrep expr) 0))
627 (otherwise (eql ($totaldisrep expr) 0))))))
628 :add #'(lambda (x y) (m+ x y))
629 :sub #'(lambda (x y) (m- x y))
630 :uminus #'(lambda (x) (m- x))
631 :mul #'(lambda (x y) (m* x y))
632 ;;(defun coeff-div (x y) (cadr ($divide x y)))
633 :div #'(lambda (x y) (m// x y))
634 :lcm #'(lambda (x y) (meval1 `((|$LCM|) ,x ,y)))
635 :ezgcd #'(lambda (x y) (apply #'values (cdr ($ezgcd ($totaldisrep x) ($totaldisrep y)))))
636 ;; :gcd #'(lambda (x y) (second ($ezgcd x y)))))
637 :gcd #'(lambda (x y) ($gcd x y))))
638
639(defvar *maxima-ring* *expression-ring*
640 "The ring of coefficients, over which all polynomials
641are assumed to be defined.")
642
643
644
645;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
646;;
647;; Maxima expression parsing
648;;
649;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
650
651(defun equal-test-p (expr1 expr2)
652 (alike1 expr1 expr2))
653
654(defun coerce-maxima-list (expr)
655 "convert a maxima list to lisp list."
656 (cond
657 ((and (consp (car expr)) (eql (caar expr) 'mlist)) (cdr expr))
658 (t expr)))
659
660(defun free-of-vars (expr vars) (apply #'$freeof `(,@vars ,expr)))
661
662(defun parse-poly (expr vars &aux (vars (coerce-maxima-list vars)))
663 "Convert a maxima polynomial expression EXPR in variables VARS to internal form."
664 (labels ((parse (arg) (parse-poly arg vars))
665 (parse-list (args) (mapcar #'parse args)))
666 (cond
667 ((eql expr 0) (make-poly-zero))
668 ((member expr vars :test #'equal-test-p)
669 (let ((pos (position expr vars :test #'equal-test-p)))
670 (make-variable *maxima-ring* (length vars) pos)))
671 ((free-of-vars expr vars)
672 ;;This means that variable-free CRE and Poisson forms will be converted
673 ;;to coefficients intact
674 (coerce-coeff *maxima-ring* expr vars))
675 (t
676 (case (caar expr)
677 (mplus (reduce #'(lambda (x y) (poly-add *maxima-ring* x y)) (parse-list (cdr expr))))
678 (mminus (poly-uminus *maxima-ring* (parse (cadr expr))))
679 (mtimes
680 (if (endp (cddr expr)) ;unary
681 (parse (cdr expr))
682 (reduce #'(lambda (p q) (poly-mul *maxima-ring* p q)) (parse-list (cdr expr)))))
683 (mexpt
684 (cond
685 ((member (cadr expr) vars :test #'equal-test-p)
686 ;;Special handling of (expt var pow)
687 (let ((pos (position (cadr expr) vars :test #'equal-test-p)))
688 (make-variable *maxima-ring* (length vars) pos (caddr expr))))
689 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
690 ;; Negative power means division in coefficient ring
691 ;; Non-integer power means non-polynomial coefficient
692 (mtell "~%Warning: Expression ~%~M~%contains power which is not a positive integer. Parsing as coefficient.~%"
693 expr)
694 (coerce-coeff *maxima-ring* expr vars))
695 (t (poly-expt *maxima-ring* (parse (cadr expr)) (caddr expr)))))
696 (mrat (parse ($ratdisrep expr)))
697 (mpois (parse ($outofpois expr)))
698 (otherwise
699 (coerce-coeff *maxima-ring* expr vars)))))))
700
701(defun parse-poly-list (expr vars)
702 (case (caar expr)
703 (mlist (mapcar #'(lambda (p) (parse-poly p vars)) (cdr expr)))
704 (t (merror "Expression ~M is not a list of polynomials in variables ~M."
705 expr vars))))
706(defun parse-poly-list-list (poly-list-list vars)
707 (mapcar #'(lambda (g) (parse-poly-list g vars)) (coerce-maxima-list poly-list-list)))
708
709
710
711;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
712;;
713;; Order utilities
714;;
715;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
716(defun find-order (order)
717 "This function returns the order function bases on its name."
718 (cond
719 ((null order) nil)
720 ((symbolp order)
721 (case order
722 ((lex :lex $lex) #'lex>)
723 ((grlex :grlex $grlex) #'grlex>)
724 ((grevlex :grevlex $grevlex) #'grevlex>)
725 ((invlex :invlex $invlex) #'invlex>)
726 ((elimination-order-1 :elimination-order-1 elimination_order_1) #'elimination-order-1)
727 (otherwise
728 (mtell "~%Warning: Order ~M not found. Using default.~%" order))))
729 (t
730 (mtell "~%Order specification ~M is not recognized. Using default.~%" order)
731 nil)))
732
733(defun find-ring (ring)
734 "This function returns the ring structure bases on input symbol."
735 (cond
736 ((null ring) nil)
737 ((symbolp ring)
738 (case ring
739 ((expression-ring :expression-ring $expression_ring) *expression-ring*)
740 ((ring-of-integers :ring-of-integers $ring_of_integers) *ring-of-integers*)
741 (otherwise
742 (mtell "~%Warning: Ring ~M not found. Using default.~%" ring))))
743 (t
744 (mtell "~%Ring specification ~M is not recognized. Using default.~%" ring)
745 nil)))
746
747(defmacro with-monomial-order ((order) &body body)
748 "Evaluate BODY with monomial order set to ORDER."
749 `(let ((*monomial-order* (or (find-order ,order) *monomial-order*)))
750 . ,body))
751
752(defmacro with-coefficient-ring ((ring) &body body)
753 "Evaluate BODY with coefficient ring set to RING."
754 `(let ((*maxima-ring* (or (find-ring ,ring) *maxima-ring*)))
755 . ,body))
756
757(defmacro with-elimination-orders ((primary secondary elimination-order)
758 &body body)
759 "Evaluate BODY with primary and secondary elimination orders set to PRIMARY and SECONDARY."
760 `(let ((*primary-elimination-order* (or (find-order ,primary) *primary-elimination-order*))
761 (*secondary-elimination-order* (or (find-order ,secondary) *secondary-elimination-order*))
762 (*elimination-order* (or (find-order ,elimination-order) *elimination-order*)))
763 . ,body))
764
765
766
767;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
768;;
769;; Conversion from internal form to Maxima general form
770;;
771;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
772
773(defun maxima-head ()
774 (if $poly_return_term_list
775 '(mlist)
776 '(mplus)))
777
778(defun coerce-to-maxima (poly-type object vars)
779 (case poly-type
780 (:polynomial
781 `(,(maxima-head) ,@(mapcar #'(lambda (term) (coerce-to-maxima :term term vars)) (poly-termlist object))))
782 (:poly-list
783 `((mlist) ,@(mapcar #'(lambda (p) ($ratdisrep (coerce-to-maxima :polynomial p vars))) object)))
784 (:term
785 `((mtimes) ,($ratdisrep (term-coeff object))
786 ,@(mapcar #'(lambda (var power) `((mexpt) ,var ,power))
787 vars (monom-exponents (term-monom object)))))
788 ;; Assumes that Lisp and Maxima logicals coincide
789 (:logical object)
790 (otherwise
791 object)))
792
793
794
795;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
796;;
797;; Macro facility for writing Maxima-level wrappers for
798;; functions operating on internal representation
799;;
800;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
801
802(defmacro with-parsed-polynomials (((maxima-vars &optional (maxima-new-vars nil new-vars-supplied-p))
803 &key (polynomials nil)
804 (poly-lists nil)
805 (poly-list-lists nil)
806 (value-type nil))
807 &body body
808 &aux (vars (gensym))
809 (new-vars (gensym)))
810 `(let ((,vars (coerce-maxima-list ,maxima-vars))
811 ,@(when new-vars-supplied-p
812 (list `(,new-vars (coerce-maxima-list ,maxima-new-vars)))))
813 (coerce-to-maxima
814 ,value-type
815 (with-coefficient-ring ($poly_coefficient_ring)
816 (with-monomial-order ($poly_monomial_order)
817 (with-elimination-orders ($poly_primary_elimination_order
818 $poly_secondary_elimination_order
819 $poly_elimination_order)
820 (let ,(let ((args nil))
821 (dolist (p polynomials args)
822 (setf args (cons `(,p (parse-poly ,p ,vars)) args)))
823 (dolist (p poly-lists args)
824 (setf args (cons `(,p (parse-poly-list ,p ,vars)) args)))
825 (dolist (p poly-list-lists args)
826 (setf args (cons `(,p (parse-poly-list-list ,p ,vars)) args))))
827 . ,body))))
828 ,(if new-vars-supplied-p
829 `(append ,vars ,new-vars)
830 vars))))
831
832(defmacro define-unop (maxima-name fun-name
833 &optional (documentation nil documentation-supplied-p))
834 "Define a MAXIMA-level unary operator MAXIMA-NAME corresponding to unary function FUN-NAME."
835 `(defun ,maxima-name (p vars
836 &aux
837 (vars (coerce-maxima-list vars))
838 (p (parse-poly p vars)))
839 ,@(when documentation-supplied-p (list documentation))
840 (coerce-to-maxima :polynomial (,fun-name *maxima-ring* p) vars)))
841
842(defmacro define-binop (maxima-name fun-name
843 &optional (documentation nil documentation-supplied-p))
844 "Define a MAXIMA-level binary operator MAXIMA-NAME corresponding to binary function FUN-NAME."
845 `(defmfun ,maxima-name (p q vars
846 &aux
847 (vars (coerce-maxima-list vars))
848 (p (parse-poly p vars))
849 (q (parse-poly q vars)))
850 ,@(when documentation-supplied-p (list documentation))
851 (coerce-to-maxima :polynomial (,fun-name *maxima-ring* p q) vars)))
852
853
854
855;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
856;;
857;; Maxima-level interface functions
858;;
859;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
860
861;; Auxillary function for removing zero polynomial
862(defun remzero (plist) (remove #'poly-zerop plist))
863
864;;Simple operators
865
866(define-binop $poly_add poly-add
867 "Adds two polynomials P and Q")
868
869(define-binop $poly_subtract poly-sub
870 "Subtracts a polynomial Q from P.")
871
872(define-binop $poly_multiply poly-mul
873 "Returns the product of polynomials P and Q.")
874
875(define-binop $poly_s_polynomial spoly
876 "Returns the syzygy polynomial (S-polynomial) of two polynomials P and Q.")
877
878(define-unop $poly_primitive_part poly-primitive-part
879 "Returns the polynomial P divided by GCD of its coefficients.")
880
881(define-unop $poly_normalize poly-normalize
882 "Returns the polynomial P divided by the leading coefficient.")
883
884;;Functions
885
886(defmfun $poly_expand (p vars)
887 "This function is equivalent to EXPAND(P) if P parses correctly to a polynomial.
888If the representation is not compatible with a polynomial in variables VARS,
889the result is an error."
890 (with-parsed-polynomials ((vars) :polynomials (p)
891 :value-type :polynomial)
892 p))
893
894(defmfun $poly_expt (p n vars)
895 (with-parsed-polynomials ((vars) :polynomials (p) :value-type :polynomial)
896 (poly-expt *maxima-ring* p n)))
897
898(defmfun $poly_content (p vars)
899 (with-parsed-polynomials ((vars) :polynomials (p))
900 (poly-content *maxima-ring* p)))
901
902(defmfun $poly_pseudo_divide (f fl vars
903 &aux (vars (coerce-maxima-list vars))
904 (f (parse-poly f vars))
905 (fl (parse-poly-list fl vars)))
906 (multiple-value-bind (quot rem c division-count)
907 (poly-pseudo-divide *maxima-ring* f fl)
908 `((mlist)
909 ,(coerce-to-maxima :poly-list quot vars)
910 ,(coerce-to-maxima :polynomial rem vars)
911 ,c
912 ,division-count)))
913
914(defmfun $poly_exact_divide (f g vars)
915 (with-parsed-polynomials ((vars) :polynomials (f g) :value-type :polynomial)
916 (poly-exact-divide *maxima-ring* f g)))
917
918(defmfun $poly_normal_form (f fl vars)
919 (with-parsed-polynomials ((vars) :polynomials (f)
920 :poly-lists (fl)
921 :value-type :polynomial)
922 (normal-form *maxima-ring* f (remzero fl) nil)))
923
924(defmfun $poly_buchberger_criterion (g vars)
925 (with-parsed-polynomials ((vars) :poly-lists (g) :value-type :logical)
926 (buchberger-criterion *maxima-ring* g)))
927
928(defmfun $poly_buchberger (fl vars)
929 (with-parsed-polynomials ((vars) :poly-lists (fl) :value-type :poly-list)
930 (buchberger *maxima-ring* (remzero fl) 0 nil)))
931
932(defmfun $poly_reduction (plist vars)
933 (with-parsed-polynomials ((vars) :poly-lists (plist)
934 :value-type :poly-list)
935 (reduction *maxima-ring* plist)))
936
937(defmfun $poly_minimization (plist vars)
938 (with-parsed-polynomials ((vars) :poly-lists (plist)
939 :value-type :poly-list)
940 (minimization plist)))
941
942(defmfun $poly_normalize_list (plist vars)
943 (with-parsed-polynomials ((vars) :poly-lists (plist)
944 :value-type :poly-list)
945 (poly-normalize-list *maxima-ring* plist)))
946
947(defmfun $poly_grobner (f vars)
948 (with-parsed-polynomials ((vars) :poly-lists (f)
949 :value-type :poly-list)
950 (grobner *maxima-ring* (remzero f))))
951
952(defmfun $poly_reduced_grobner (f vars)
953 (with-parsed-polynomials ((vars) :poly-lists (f)
954 :value-type :poly-list)
955 (reduced-grobner *maxima-ring* (remzero f))))
956
957(defmfun $poly_depends_p (p var mvars
958 &aux (vars (coerce-maxima-list mvars))
959 (pos (position var vars)))
960 (if (null pos)
961 (merror "~%Variable ~M not in the list of variables ~M." var mvars)
962 (poly-depends-p (parse-poly p vars) pos)))
963
964(defmfun $poly_elimination_ideal (flist k vars)
965 (with-parsed-polynomials ((vars) :poly-lists (flist)
966 :value-type :poly-list)
967 (elimination-ideal *maxima-ring* flist k nil 0)))
968
969(defmfun $poly_colon_ideal (f g vars)
970 (with-parsed-polynomials ((vars) :poly-lists (f g) :value-type :poly-list)
971 (colon-ideal *maxima-ring* f g nil)))
972
973(defmfun $poly_ideal_intersection (f g vars)
974 (with-parsed-polynomials ((vars) :poly-lists (f g) :value-type :poly-list)
975 (ideal-intersection *maxima-ring* f g nil)))
976
977(defmfun $poly_lcm (f g vars)
978 (with-parsed-polynomials ((vars) :polynomials (f g) :value-type :polynomial)
979 (poly-lcm *maxima-ring* f g)))
980
981(defmfun $poly_gcd (f g vars)
982 ($first ($divide (m* f g) ($poly_lcm f g vars))))
983
984(defmfun $poly_grobner_equal (g1 g2 vars)
985 (with-parsed-polynomials ((vars) :poly-lists (g1 g2))
986 (grobner-equal *maxima-ring* g1 g2)))
987
988(defmfun $poly_grobner_subsetp (g1 g2 vars)
989 (with-parsed-polynomials ((vars) :poly-lists (g1 g2))
990 (grobner-subsetp *maxima-ring* g1 g2)))
991
992(defmfun $poly_grobner_member (p g vars)
993 (with-parsed-polynomials ((vars) :polynomials (p) :poly-lists (g))
994 (grobner-member *maxima-ring* p g)))
995
996(defmfun $poly_ideal_saturation1 (f p vars)
997 (with-parsed-polynomials ((vars) :poly-lists (f) :polynomials (p)
998 :value-type :poly-list)
999 (ideal-saturation-1 *maxima-ring* f p 0)))
1000
1001(defmfun $poly_saturation_extension (f plist vars new-vars)
1002 (with-parsed-polynomials ((vars new-vars)
1003 :poly-lists (f plist)
1004 :value-type :poly-list)
1005 (saturation-extension *maxima-ring* f plist)))
1006
1007(defmfun $poly_polysaturation_extension (f plist vars new-vars)
1008 (with-parsed-polynomials ((vars new-vars)
1009 :poly-lists (f plist)
1010 :value-type :poly-list)
1011 (polysaturation-extension *maxima-ring* f plist)))
1012
1013(defmfun $poly_ideal_polysaturation1 (f plist vars)
1014 (with-parsed-polynomials ((vars) :poly-lists (f plist)
1015 :value-type :poly-list)
1016 (ideal-polysaturation-1 *maxima-ring* f plist 0 nil)))
1017
1018(defmfun $poly_ideal_saturation (f g vars)
1019 (with-parsed-polynomials ((vars) :poly-lists (f g)
1020 :value-type :poly-list)
1021 (ideal-saturation *maxima-ring* f g 0 nil)))
1022
1023(defmfun $poly_ideal_polysaturation (f ideal-list vars)
1024 (with-parsed-polynomials ((vars) :poly-lists (f)
1025 :poly-list-lists (ideal-list)
1026 :value-type :poly-list)
1027 (ideal-polysaturation *maxima-ring* f ideal-list 0 nil)))
1028
1029(defmfun $poly_lt (f vars)
1030 (with-parsed-polynomials ((vars) :polynomials (f) :value-type :polynomial)
1031 (make-poly-from-termlist (list (poly-lt f)))))
1032
1033(defmfun $poly_lm (f vars)
1034 (with-parsed-polynomials ((vars) :polynomials (f) :value-type :polynomial)
1035 (make-poly-from-termlist (list (make-term (poly-lm f) (funcall (ring-unit *maxima-ring*)))))))
1036
Note: See TracBrowser for help on using the repository browser.