1 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*-
|
---|
2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
3 | ;;;
|
---|
4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
5 | ;;;
|
---|
6 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
7 | ;;; it under the terms of the GNU General Public License as published by
|
---|
8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
9 | ;;; (at your option) any later version.
|
---|
10 | ;;;
|
---|
11 | ;;; This program is distributed in the hope that it will be useful,
|
---|
12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | ;;; GNU General Public License for more details.
|
---|
15 | ;;;
|
---|
16 | ;;; You should have received a copy of the GNU General Public License
|
---|
17 | ;;; along with this program; if not, write to the Free Software
|
---|
18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
19 | ;;;
|
---|
20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
21 |
|
---|
22 | (defpackage "GROBNER"
|
---|
23 | (:use :cl))
|
---|
24 |
|
---|
25 | (in-package :grobner)
|
---|
26 |
|
---|
27 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
28 | ;;
|
---|
29 | ;; Global switches
|
---|
30 | ;;
|
---|
31 | ;; Can be used in Maxima just fine, as they observe the
|
---|
32 | ;; Maxima naming convention, i.e. all names visible at the
|
---|
33 | ;; Maxima toplevel begin with a '$'.
|
---|
34 | ;;
|
---|
35 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
36 |
|
---|
37 | (defvar $poly_monomial_order '$lex
|
---|
38 | "This switch controls which monomial order is used in polynomial
|
---|
39 | and Grobner basis calculations. If not set, LEX will be used")
|
---|
40 |
|
---|
41 | (defvar $poly_coefficient_ring '$expression_ring
|
---|
42 | "This switch indicates the coefficient ring of the polynomials
|
---|
43 | that will be used in grobner calculations. If not set, Maxima's
|
---|
44 | general expression ring will be used. This variable may be set
|
---|
45 | to RING_OF_INTEGERS if desired.")
|
---|
46 |
|
---|
47 | (defvar $poly_primary_elimination_order nil
|
---|
48 | "Name of the default order for eliminated variables in elimination-based functions.
|
---|
49 | If not set, LEX will be used.")
|
---|
50 |
|
---|
51 | (defvar $poly_secondary_elimination_order nil
|
---|
52 | "Name of the default order for kept variables in elimination-based functions.
|
---|
53 | If not set, LEX will be used.")
|
---|
54 |
|
---|
55 | (defvar $poly_elimination_order nil
|
---|
56 | "Name of the default elimination order used in elimination calculations.
|
---|
57 | If set, it overrides the settings in variables POLY_PRIMARY_ELIMINATION_ORDER
|
---|
58 | and SECONDARY_ELIMINATION_ORDER. The user must ensure that this is a true
|
---|
59 | elimination order valid for the number of eliminated variables.")
|
---|
60 |
|
---|
61 | (defvar $poly_return_term_list nil
|
---|
62 | "If set to T, all functions in this package will return each polynomial as a
|
---|
63 | list of terms in the current monomial order rather than a Maxima general expression.")
|
---|
64 |
|
---|
65 | (defvar $poly_grobner_debug nil
|
---|
66 | "If set to TRUE, produce debugging and tracing output.")
|
---|
67 |
|
---|
68 | (defvar $poly_grobner_algorithm '$buchberger
|
---|
69 | "The name of the algorithm used to find grobner bases.")
|
---|
70 |
|
---|
71 | (defvar $poly_top_reduction_only nil
|
---|
72 | "If not FALSE, use top reduction only whenever possible.
|
---|
73 | Top reduction means that division algorithm stops after the first reduction.")
|
---|
74 |
|
---|
75 | |
---|
76 |
|
---|
77 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
78 | ;;
|
---|
79 | ;; Coefficient ring operations
|
---|
80 | ;;
|
---|
81 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
82 | ;;
|
---|
83 | ;; These are ALL operations that are performed on the coefficients by
|
---|
84 | ;; the package, and thus the coefficient ring can be changed by merely
|
---|
85 | ;; redefining these operations.
|
---|
86 | ;;
|
---|
87 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
88 |
|
---|
89 | (defstruct (ring)
|
---|
90 | (parse #'identity :type function)
|
---|
91 | (unit #'identity :type function)
|
---|
92 | (zerop #'identity :type function)
|
---|
93 | (add #'identity :type function)
|
---|
94 | (sub #'identity :type function)
|
---|
95 | (uminus #'identity :type function)
|
---|
96 | (mul #'identity :type function)
|
---|
97 | (div #'identity :type function)
|
---|
98 | (lcm #'identity :type function)
|
---|
99 | (ezgcd #'identity :type function)
|
---|
100 | (gcd #'identity :type function))
|
---|
101 |
|
---|
102 | (defparameter *ring-of-integers*
|
---|
103 | (make-ring
|
---|
104 | :parse #'identity
|
---|
105 | :unit #'(lambda () 1)
|
---|
106 | :zerop #'zerop
|
---|
107 | :add #'+
|
---|
108 | :sub #'-
|
---|
109 | :uminus #'-
|
---|
110 | :mul #'*
|
---|
111 | :div #'/
|
---|
112 | :lcm #'lcm
|
---|
113 | :ezgcd #'(lambda (x y &aux (c (gcd x y))) (values c (/ x c) (/ y c)))
|
---|
114 | :gcd #'gcd)
|
---|
115 | "The ring of integers.")
|
---|
116 |
|
---|
117 | (defvar *expression-ring* *ring-of-integers*
|
---|
118 | "The ring of coefficients, over which all polynomials are assumed to
|
---|
119 | be defined.")
|
---|
120 |
|
---|
121 | (defvar *ratdisrep-fun* #'identity
|
---|
122 | "A function applied to polynomials after conversion to Maxima representation.")
|
---|
123 |
|
---|
124 | |
---|
125 |
|
---|
126 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
127 | ;;
|
---|
128 | ;; This is how we perform operations on coefficients
|
---|
129 | ;; using Maxima functions.
|
---|
130 | ;;
|
---|
131 | ;; Functions and macros dealing with internal representation structure
|
---|
132 | ;;
|
---|
133 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
134 |
|
---|
135 |
|
---|
136 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
137 | ;;
|
---|
138 | ;; Debugging/tracing
|
---|
139 | ;;
|
---|
140 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
141 | (defmacro debug-cgb (&rest args)
|
---|
142 | `(when $poly_grobner_debug (format *terminal-io* ,@args)))
|
---|
143 |
|
---|
144 |
|
---|
145 |
|
---|
146 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
147 | ;;
|
---|
148 | ;; These are provided mostly for debugging purposes To enable
|
---|
149 | ;; verification of grobner bases with BUCHBERGER-CRITERION, do
|
---|
150 | ;; (pushnew :grobner-check *features*) and compile/load this file.
|
---|
151 | ;; With this feature, the calculations will slow down CONSIDERABLY.
|
---|
152 | ;;
|
---|
153 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
154 |
|
---|
155 | (defun grobner-test (ring g f)
|
---|
156 | "Test whether G is a Grobner basis and F is contained in G. Return T
|
---|
157 | upon success and NIL otherwise."
|
---|
158 | (debug-cgb "~&GROBNER CHECK: ")
|
---|
159 | (let (($poly_grobner_debug nil)
|
---|
160 | (stat1 (buchberger-criterion ring g))
|
---|
161 | (stat2
|
---|
162 | (every #'poly-zerop
|
---|
163 | (makelist (normal-form ring (copy-tree (elt f i)) g nil)
|
---|
164 | (i 0 (1- (length f)))))))
|
---|
165 | (unless stat1 (error "~&Buchberger criterion failed."))
|
---|
166 | (unless stat2
|
---|
167 | (error "~&Original polys not in ideal spanned by Grobner.")))
|
---|
168 | (debug-cgb "~&GROBNER CHECK END")
|
---|
169 | t)
|
---|
170 |
|
---|
171 |
|
---|
172 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
173 | ;;
|
---|
174 | ;; Selection of algorithm and pair heuristic
|
---|
175 | ;;
|
---|
176 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
177 |
|
---|
178 | (defun find-grobner-function (algorithm)
|
---|
179 | "Return a function which calculates Grobner basis, based on its
|
---|
180 | names. Names currently used are either Lisp symbols, Maxima symbols or
|
---|
181 | keywords."
|
---|
182 | (ecase algorithm
|
---|
183 | ((buchberger :buchberger $buchberger) #'buchberger)
|
---|
184 | ((parallel-buchberger :parallel-buchberger $parallel_buchberger) #'parallel-buchberger)
|
---|
185 | ((gebauer-moeller :gebauer_moeller $gebauer_moeller) #'gebauer-moeller)))
|
---|
186 |
|
---|
187 | (defun grobner (ring f &optional (start 0) (top-reduction-only nil))
|
---|
188 | ;;(setf F (sort F #'< :key #'sugar))
|
---|
189 | (funcall
|
---|
190 | (find-grobner-function $poly_grobner_algorithm)
|
---|
191 | ring f start top-reduction-only))
|
---|
192 |
|
---|
193 | (defun reduced-grobner (ring f &optional (start 0) (top-reduction-only $poly_top_reduction_only))
|
---|
194 | (reduction ring (grobner ring f start top-reduction-only)))
|
---|
195 |
|
---|
196 | (defun set-pair-heuristic (method)
|
---|
197 | "Sets up variables *PAIR-KEY-FUNCTION* and *PAIR-ORDER* used
|
---|
198 | to determine the priority of critical pairs in the priority queue."
|
---|
199 | (ecase method
|
---|
200 | ((sugar :sugar $sugar)
|
---|
201 | (setf *pair-key-function* #'sugar-pair-key
|
---|
202 | *pair-order* #'sugar-order))
|
---|
203 | ; ((minimal-mock-spoly :minimal-mock-spoly $minimal_mock_spoly)
|
---|
204 | ; (setf *pair-key-function* #'mock-spoly
|
---|
205 | ; *pair-order* #'mock-spoly-order))
|
---|
206 | ((minimal-lcm :minimal-lcm $minimal_lcm)
|
---|
207 | (setf *pair-key-function* #'(lambda (p q)
|
---|
208 | (monom-lcm (poly-lm p) (poly-lm q)))
|
---|
209 | *pair-order* #'reverse-monomial-order))
|
---|
210 | ((minimal-total-degree :minimal-total-degree $minimal_total_degree)
|
---|
211 | (setf *pair-key-function* #'(lambda (p q)
|
---|
212 | (monom-total-degree
|
---|
213 | (monom-lcm (poly-lm p) (poly-lm q))))
|
---|
214 | *pair-order* #'<))
|
---|
215 | ((minimal-length :minimal-length $minimal_length)
|
---|
216 | (setf *pair-key-function* #'(lambda (p q)
|
---|
217 | (+ (poly-length p) (poly-length q)))
|
---|
218 | *pair-order* #'<))))
|
---|
219 |
|
---|
220 |
|
---|
221 | |
---|
222 |
|
---|
223 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
224 | ;;
|
---|
225 | ;; Conversion from internal to infix form
|
---|
226 | ;;
|
---|
227 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
228 |
|
---|
229 | (defun coerce-to-infix (poly-type object vars)
|
---|
230 | (case poly-type
|
---|
231 | (:termlist
|
---|
232 | `(+ ,@(mapcar #'(lambda (term) (coerce-to-infix :term term vars)) object)))
|
---|
233 | (:polynomial
|
---|
234 | (coerce-to-infix :termlist (poly-termlist object) vars))
|
---|
235 | (:poly-list
|
---|
236 | `([ ,@(mapcar #'(lambda (p) (coerce-to-infix :polynomial p vars)) object)))
|
---|
237 | (:term
|
---|
238 | `(* ,(term-coeff object)
|
---|
239 | ,@(mapcar #'(lambda (var power) `(expt ,var ,power))
|
---|
240 | vars (monom-exponents (term-monom object)))))
|
---|
241 | (otherwise
|
---|
242 | object)))
|
---|
243 |
|
---|
244 |
|
---|
245 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
246 | ;;
|
---|
247 | ;; Order utilities
|
---|
248 | ;;
|
---|
249 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
250 | (defun find-order (order)
|
---|
251 | "This function returns the order function bases on its name."
|
---|
252 | (cond
|
---|
253 | ((null order) nil)
|
---|
254 | ((symbolp order)
|
---|
255 | (case order
|
---|
256 | ((lex :lex $lex) #'lex>)
|
---|
257 | ((grlex :grlex $grlex) #'grlex>)
|
---|
258 | ((grevlex :grevlex $grevlex) #'grevlex>)
|
---|
259 | ((invlex :invlex $invlex) #'invlex>)
|
---|
260 | ((elimination-order-1 :elimination-order-1 elimination_order_1) #'elimination-order-1)
|
---|
261 | (otherwise
|
---|
262 | (warn "~%Warning: Order ~A not found. Using default.~%" order))))
|
---|
263 | (t
|
---|
264 | (warn "~%Order specification ~A is not recognized. Using default.~%" order)
|
---|
265 | nil)))
|
---|
266 |
|
---|
267 | (defun find-ring (ring)
|
---|
268 | "This function returns the ring structure bases on input symbol."
|
---|
269 | (cond
|
---|
270 | ((null ring) nil)
|
---|
271 | ((symbolp ring)
|
---|
272 | (case ring
|
---|
273 | ((expression-ring :expression-ring $expression_ring) *expression-ring*)
|
---|
274 | ((ring-of-integers :ring-of-integers $ring_of_integers) *ring-of-integers*)
|
---|
275 | (otherwise
|
---|
276 | (warn "~%Warning: Ring ~A not found. Using default.~%" ring))))
|
---|
277 | (t
|
---|
278 | (warn "~%Ring specification ~A is not recognized. Using default.~%" ring)
|
---|
279 | nil)))
|
---|
280 |
|
---|
281 | (defmacro with-monomial-order ((order) &body body)
|
---|
282 | "Evaluate BODY with monomial order set to ORDER."
|
---|
283 | `(let ((*monomial-order* (or (find-order ,order) *monomial-order*)))
|
---|
284 | . ,body))
|
---|
285 |
|
---|
286 | (defmacro with-coefficient-ring ((ring) &body body)
|
---|
287 | "Evaluate BODY with coefficient ring set to RING."
|
---|
288 | `(let ((*coefficient-ring* (or (find-ring ,ring) *coefficient-ring*)))
|
---|
289 | . ,body))
|
---|
290 |
|
---|
291 | (defmacro with-elimination-orders ((primary secondary elimination-order)
|
---|
292 | &body body)
|
---|
293 | "Evaluate BODY with primary and secondary elimination orders set to PRIMARY and SECONDARY."
|
---|
294 | `(let ((*primary-elimination-order* (or (find-order ,primary) *primary-elimination-order*))
|
---|
295 | (*secondary-elimination-order* (or (find-order ,secondary) *secondary-elimination-order*))
|
---|
296 | (*elimination-order* (or (find-order ,elimination-order) *elimination-order*)))
|
---|
297 | . ,body))
|
---|
298 |
|
---|
299 | |
---|
300 |
|
---|
301 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
302 | ;;
|
---|
303 | ;; Conversion from internal form to Maxima general form
|
---|
304 | ;;
|
---|
305 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
306 |
|
---|
307 | (defun maxima-head ()
|
---|
308 | (if $poly_return_term_list
|
---|
309 | '(mlist)
|
---|
310 | '(mplus)))
|
---|
311 |
|
---|
312 | (defun coerce-to-maxima (poly-type object vars)
|
---|
313 | (case poly-type
|
---|
314 | (:polynomial
|
---|
315 | `(,(maxima-head) ,@(mapcar #'(lambda (term) (coerce-to-maxima :term term vars)) (poly-termlist object))))
|
---|
316 | (:poly-list
|
---|
317 | `((mlist) ,@(mapcar #'(lambda (p) (funcall *ratdisrep-fun* (coerce-to-maxima :polynomial p vars))) object)))
|
---|
318 | (:term
|
---|
319 | `((mtimes) ,(funcall *ratdisrep-fun* (term-coeff object))
|
---|
320 | ,@(mapcar #'(lambda (var power) `((mexpt) ,var ,power))
|
---|
321 | vars (monom-exponents (term-monom object)))))
|
---|
322 | ;; Assumes that Lisp and Maxima logicals coincide
|
---|
323 | (:logical object)
|
---|
324 | (otherwise
|
---|
325 | object)))
|
---|
326 |
|
---|
327 | |
---|
328 |
|
---|
329 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
330 | ;;
|
---|
331 | ;; Macro facility for writing Maxima-level wrappers for
|
---|
332 | ;; functions operating on internal representation
|
---|
333 | ;;
|
---|
334 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
335 |
|
---|
336 | (defmacro with-parsed-polynomials (((maxima-vars &optional (maxima-new-vars nil new-vars-supplied-p))
|
---|
337 | &key (polynomials nil)
|
---|
338 | (poly-lists nil)
|
---|
339 | (poly-list-lists nil)
|
---|
340 | (value-type nil))
|
---|
341 | &body body
|
---|
342 | &aux (vars (gensym))
|
---|
343 | (new-vars (gensym)))
|
---|
344 | `(let ((,vars (coerce-maxima-list ,maxima-vars))
|
---|
345 | ,@(when new-vars-supplied-p
|
---|
346 | (list `(,new-vars (coerce-maxima-list ,maxima-new-vars)))))
|
---|
347 | (coerce-to-maxima
|
---|
348 | ,value-type
|
---|
349 | (with-coefficient-ring ($poly_coefficient_ring)
|
---|
350 | (with-monomial-order ($poly_monomial_order)
|
---|
351 | (with-elimination-orders ($poly_primary_elimination_order
|
---|
352 | $poly_secondary_elimination_order
|
---|
353 | $poly_elimination_order)
|
---|
354 | (let ,(let ((args nil))
|
---|
355 | (dolist (p polynomials args)
|
---|
356 | (setf args (cons `(,p (parse-poly ,p ,vars)) args)))
|
---|
357 | (dolist (p poly-lists args)
|
---|
358 | (setf args (cons `(,p (parse-poly-list ,p ,vars)) args)))
|
---|
359 | (dolist (p poly-list-lists args)
|
---|
360 | (setf args (cons `(,p (parse-poly-list-list ,p ,vars)) args))))
|
---|
361 | . ,body))))
|
---|
362 | ,(if new-vars-supplied-p
|
---|
363 | `(append ,vars ,new-vars)
|
---|
364 | vars))))
|
---|
365 |
|
---|
366 |
|
---|