1 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*-
|
---|
2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
3 | ;;;
|
---|
4 | ;;; Copyright (C) 1999, 2002, 2009 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
5 | ;;;
|
---|
6 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
7 | ;;; it under the terms of the GNU General Public License as published by
|
---|
8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
9 | ;;; (at your option) any later version.
|
---|
10 | ;;;
|
---|
11 | ;;; This program is distributed in the hope that it will be useful,
|
---|
12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | ;;; GNU General Public License for more details.
|
---|
15 | ;;;
|
---|
16 | ;;; You should have received a copy of the GNU General Public License
|
---|
17 | ;;; along with this program; if not, write to the Free Software
|
---|
18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
19 | ;;;
|
---|
20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
21 |
|
---|
22 | (in-package :maxima)
|
---|
23 |
|
---|
24 | (macsyma-module cgb-maxima)
|
---|
25 |
|
---|
26 | (eval-when
|
---|
27 | #+gcl (load eval)
|
---|
28 | #-gcl (:load-toplevel :execute)
|
---|
29 | (format t "~&Loading maxima-grobner ~a ~a~%"
|
---|
30 | "$Revision: 2.0 $" "$Date: 2015/06/02 0:34:17 $"))
|
---|
31 |
|
---|
32 | ;;FUNCTS is loaded because it contains the definition of LCM
|
---|
33 | ($load "functs")
|
---|
34 |
|
---|
35 |
|
---|
36 |
|
---|
37 |
|
---|
38 | |
---|
39 |
|
---|
40 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
41 | ;;
|
---|
42 | ;; Global switches
|
---|
43 | ;; (Can be used in Maxima just fine)
|
---|
44 | ;;
|
---|
45 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
46 |
|
---|
47 | (defmvar $poly_monomial_order '$lex
|
---|
48 | "This switch controls which monomial order is used in polynomial
|
---|
49 | and Grobner basis calculations. If not set, LEX will be used")
|
---|
50 |
|
---|
51 | (defmvar $poly_coefficient_ring '$expression_ring
|
---|
52 | "This switch indicates the coefficient ring of the polynomials
|
---|
53 | that will be used in grobner calculations. If not set, Maxima's
|
---|
54 | general expression ring will be used. This variable may be set
|
---|
55 | to RING_OF_INTEGERS if desired.")
|
---|
56 |
|
---|
57 | (defmvar $poly_primary_elimination_order nil
|
---|
58 | "Name of the default order for eliminated variables in elimination-based functions.
|
---|
59 | If not set, LEX will be used.")
|
---|
60 |
|
---|
61 | (defmvar $poly_secondary_elimination_order nil
|
---|
62 | "Name of the default order for kept variables in elimination-based functions.
|
---|
63 | If not set, LEX will be used.")
|
---|
64 |
|
---|
65 | (defmvar $poly_elimination_order nil
|
---|
66 | "Name of the default elimination order used in elimination calculations.
|
---|
67 | If set, it overrides the settings in variables POLY_PRIMARY_ELIMINATION_ORDER
|
---|
68 | and SECONDARY_ELIMINATION_ORDER. The user must ensure that this is a true
|
---|
69 | elimination order valid for the number of eliminated variables.")
|
---|
70 |
|
---|
71 | (defmvar $poly_return_term_list nil
|
---|
72 | "If set to T, all functions in this package will return each polynomial as a
|
---|
73 | list of terms in the current monomial order rather than a Maxima general expression.")
|
---|
74 |
|
---|
75 | (defmvar $poly_grobner_debug nil
|
---|
76 | "If set to TRUE, produce debugging and tracing output.")
|
---|
77 |
|
---|
78 | (defmvar $poly_grobner_algorithm '$buchberger
|
---|
79 | "The name of the algorithm used to find grobner bases.")
|
---|
80 |
|
---|
81 | (defmvar $poly_top_reduction_only nil
|
---|
82 | "If not FALSE, use top reduction only whenever possible.
|
---|
83 | Top reduction means that division algorithm stops after the first reduction.")
|
---|
84 |
|
---|
85 | |
---|
86 |
|
---|
87 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
88 | ;;
|
---|
89 | ;; Coefficient ring operations
|
---|
90 | ;;
|
---|
91 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
92 | ;;
|
---|
93 | ;; These are ALL operations that are performed on the coefficients by
|
---|
94 | ;; the package, and thus the coefficient ring can be changed by merely
|
---|
95 | ;; redefining these operations.
|
---|
96 | ;;
|
---|
97 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
98 |
|
---|
99 | (defstruct (ring)
|
---|
100 | (parse #'identity :type function)
|
---|
101 | (unit #'identity :type function)
|
---|
102 | (zerop #'identity :type function)
|
---|
103 | (add #'identity :type function)
|
---|
104 | (sub #'identity :type function)
|
---|
105 | (uminus #'identity :type function)
|
---|
106 | (mul #'identity :type function)
|
---|
107 | (div #'identity :type function)
|
---|
108 | (lcm #'identity :type function)
|
---|
109 | (ezgcd #'identity :type function)
|
---|
110 | (gcd #'identity :type function))
|
---|
111 |
|
---|
112 | (defparameter *ring-of-integers*
|
---|
113 | (make-ring
|
---|
114 | :parse #'identity
|
---|
115 | :unit #'(lambda () 1)
|
---|
116 | :zerop #'zerop
|
---|
117 | :add #'+
|
---|
118 | :sub #'-
|
---|
119 | :uminus #'-
|
---|
120 | :mul #'*
|
---|
121 | :div #'/
|
---|
122 | :lcm #'lcm
|
---|
123 | :ezgcd #'(lambda (x y &aux (c (gcd x y))) (values c (/ x c) (/ y c)))
|
---|
124 | :gcd #'gcd)
|
---|
125 | "The ring of integers.")
|
---|
126 |
|
---|
127 | |
---|
128 |
|
---|
129 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
130 | ;;
|
---|
131 | ;; This is how we perform operations on coefficients
|
---|
132 | ;; using Maxima functions.
|
---|
133 | ;;
|
---|
134 | ;; Functions and macros dealing with internal representation structure
|
---|
135 | ;;
|
---|
136 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
137 |
|
---|
138 |
|
---|
139 | |
---|
140 |
|
---|
141 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
142 | ;;
|
---|
143 | ;; Low-level polynomial arithmetic done on
|
---|
144 | ;; lists of terms
|
---|
145 | ;;
|
---|
146 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
147 |
|
---|
148 | (defmacro termlist-lt (p) `(car ,p))
|
---|
149 | (defun termlist-lm (p) (term-monom (termlist-lt p)))
|
---|
150 | (defun termlist-lc (p) (term-coeff (termlist-lt p)))
|
---|
151 |
|
---|
152 | (define-modify-macro scalar-mul (c) coeff-mul)
|
---|
153 |
|
---|
154 | (defun scalar-times-termlist (ring c p)
|
---|
155 | "Multiply scalar C by a polynomial P. This function works
|
---|
156 | even if there are divisors of 0."
|
---|
157 | (mapcan
|
---|
158 | #'(lambda (term)
|
---|
159 | (let ((c1 (funcall (ring-mul ring) c (term-coeff term))))
|
---|
160 | (unless (funcall (ring-zerop ring) c1)
|
---|
161 | (list (make-term (term-monom term) c1)))))
|
---|
162 | p))
|
---|
163 |
|
---|
164 |
|
---|
165 | (defun term-mul (ring term1 term2)
|
---|
166 | "Returns (LIST TERM) wheter TERM is the product of the terms TERM1 TERM2,
|
---|
167 | or NIL when the product is 0. This definition takes care of divisors of 0
|
---|
168 | in the coefficient ring."
|
---|
169 | (let ((c (funcall (ring-mul ring) (term-coeff term1) (term-coeff term2))))
|
---|
170 | (unless (funcall (ring-zerop ring) c)
|
---|
171 | (list (make-term (monom-mul (term-monom term1) (term-monom term2)) c)))))
|
---|
172 |
|
---|
173 | (defun term-times-termlist (ring term f)
|
---|
174 | (declare (type ring ring))
|
---|
175 | (mapcan #'(lambda (term-f) (term-mul ring term term-f)) f))
|
---|
176 |
|
---|
177 | (defun termlist-times-term (ring f term)
|
---|
178 | (mapcan #'(lambda (term-f) (term-mul ring term-f term)) f))
|
---|
179 |
|
---|
180 | (defun monom-times-term (m term)
|
---|
181 | (make-term (monom-mul m (term-monom term)) (term-coeff term)))
|
---|
182 |
|
---|
183 | (defun monom-times-termlist (m f)
|
---|
184 | (cond
|
---|
185 | ((null f) nil)
|
---|
186 | (t
|
---|
187 | (mapcar #'(lambda (x) (monom-times-term m x)) f))))
|
---|
188 |
|
---|
189 | (defun termlist-uminus (ring f)
|
---|
190 | (mapcar #'(lambda (x)
|
---|
191 | (make-term (term-monom x) (funcall (ring-uminus ring) (term-coeff x))))
|
---|
192 | f))
|
---|
193 |
|
---|
194 | (defun termlist-add (ring p q)
|
---|
195 | (declare (type list p q))
|
---|
196 | (do (r)
|
---|
197 | ((cond
|
---|
198 | ((endp p)
|
---|
199 | (setf r (revappend r q)) t)
|
---|
200 | ((endp q)
|
---|
201 | (setf r (revappend r p)) t)
|
---|
202 | (t
|
---|
203 | (multiple-value-bind
|
---|
204 | (lm-greater lm-equal)
|
---|
205 | (monomial-order (termlist-lm p) (termlist-lm q))
|
---|
206 | (cond
|
---|
207 | (lm-equal
|
---|
208 | (let ((s (funcall (ring-add ring) (termlist-lc p) (termlist-lc q))))
|
---|
209 | (unless (funcall (ring-zerop ring) s) ;check for cancellation
|
---|
210 | (setf r (cons (make-term (termlist-lm p) s) r)))
|
---|
211 | (setf p (cdr p) q (cdr q))))
|
---|
212 | (lm-greater
|
---|
213 | (setf r (cons (car p) r)
|
---|
214 | p (cdr p)))
|
---|
215 | (t (setf r (cons (car q) r)
|
---|
216 | q (cdr q)))))
|
---|
217 | nil))
|
---|
218 | r)))
|
---|
219 |
|
---|
220 | (defun termlist-sub (ring p q)
|
---|
221 | (declare (type list p q))
|
---|
222 | (do (r)
|
---|
223 | ((cond
|
---|
224 | ((endp p)
|
---|
225 | (setf r (revappend r (termlist-uminus ring q)))
|
---|
226 | t)
|
---|
227 | ((endp q)
|
---|
228 | (setf r (revappend r p))
|
---|
229 | t)
|
---|
230 | (t
|
---|
231 | (multiple-value-bind
|
---|
232 | (mgreater mequal)
|
---|
233 | (monomial-order (termlist-lm p) (termlist-lm q))
|
---|
234 | (cond
|
---|
235 | (mequal
|
---|
236 | (let ((s (funcall (ring-sub ring) (termlist-lc p) (termlist-lc q))))
|
---|
237 | (unless (funcall (ring-zerop ring) s) ;check for cancellation
|
---|
238 | (setf r (cons (make-term (termlist-lm p) s) r)))
|
---|
239 | (setf p (cdr p) q (cdr q))))
|
---|
240 | (mgreater
|
---|
241 | (setf r (cons (car p) r)
|
---|
242 | p (cdr p)))
|
---|
243 | (t (setf r (cons (make-term (termlist-lm q) (funcall (ring-uminus ring) (termlist-lc q))) r)
|
---|
244 | q (cdr q)))))
|
---|
245 | nil))
|
---|
246 | r)))
|
---|
247 |
|
---|
248 | ;; Multiplication of polynomials
|
---|
249 | ;; Non-destructive version
|
---|
250 | (defun termlist-mul (ring p q)
|
---|
251 | (cond ((or (endp p) (endp q)) nil) ;p or q is 0 (represented by NIL)
|
---|
252 | ;; If p=p0+p1 and q=q0+q1 then pq=p0q0+p0q1+p1q
|
---|
253 | ((endp (cdr p))
|
---|
254 | (term-times-termlist ring (car p) q))
|
---|
255 | ((endp (cdr q))
|
---|
256 | (termlist-times-term ring p (car q)))
|
---|
257 | (t
|
---|
258 | (let ((head (term-mul ring (termlist-lt p) (termlist-lt q)))
|
---|
259 | (tail (termlist-add ring (term-times-termlist ring (car p) (cdr q))
|
---|
260 | (termlist-mul ring (cdr p) q))))
|
---|
261 | (cond ((null head) tail)
|
---|
262 | ((null tail) head)
|
---|
263 | (t (nconc head tail)))))))
|
---|
264 |
|
---|
265 | (defun termlist-unit (ring dimension)
|
---|
266 | (declare (fixnum dimension))
|
---|
267 | (list (make-term (make-monom dimension :initial-element 0)
|
---|
268 | (funcall (ring-unit ring)))))
|
---|
269 |
|
---|
270 | (defun termlist-expt (ring poly n &aux (dim (monom-dimension (termlist-lm poly))))
|
---|
271 | (declare (type fixnum n dim))
|
---|
272 | (cond
|
---|
273 | ((minusp n) (error "termlist-expt: Negative exponent."))
|
---|
274 | ((endp poly) (if (zerop n) (termlist-unit ring dim) nil))
|
---|
275 | (t
|
---|
276 | (do ((k 1 (ash k 1))
|
---|
277 | (q poly (termlist-mul ring q q)) ;keep squaring
|
---|
278 | (p (termlist-unit ring dim) (if (not (zerop (logand k n))) (termlist-mul ring p q) p)))
|
---|
279 | ((> k n) p)
|
---|
280 | (declare (fixnum k))))))
|
---|
281 |
|
---|
282 | |
---|
283 |
|
---|
284 |
|
---|
285 |
|
---|
286 |
|
---|
287 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
288 | ;;
|
---|
289 | ;; Debugging/tracing
|
---|
290 | ;;
|
---|
291 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
292 | (defmacro debug-cgb (&rest args)
|
---|
293 | `(when $poly_grobner_debug (format *terminal-io* ,@args)))
|
---|
294 |
|
---|
295 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
296 | ;;
|
---|
297 | ;; An implementation of Grobner basis
|
---|
298 | ;;
|
---|
299 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
300 |
|
---|
301 | (defun spoly (ring f g)
|
---|
302 | "It yields the S-polynomial of polynomials F and G."
|
---|
303 | (declare (type poly f g))
|
---|
304 | (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
|
---|
305 | (mf (monom-div lcm (poly-lm f)))
|
---|
306 | (mg (monom-div lcm (poly-lm g))))
|
---|
307 | (declare (type monom mf mg))
|
---|
308 | (multiple-value-bind (c cf cg)
|
---|
309 | (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
|
---|
310 | (declare (ignore c))
|
---|
311 | (poly-sub
|
---|
312 | ring
|
---|
313 | (scalar-times-poly ring cg (monom-times-poly mf f))
|
---|
314 | (scalar-times-poly ring cf (monom-times-poly mg g))))))
|
---|
315 |
|
---|
316 |
|
---|
317 | (defun poly-primitive-part (ring p)
|
---|
318 | "Divide polynomial P with integer coefficients by gcd of its
|
---|
319 | coefficients and return the result."
|
---|
320 | (declare (type poly p))
|
---|
321 | (if (poly-zerop p)
|
---|
322 | (values p 1)
|
---|
323 | (let ((c (poly-content ring p)))
|
---|
324 | (values (make-poly-from-termlist (mapcar
|
---|
325 | #'(lambda (x)
|
---|
326 | (make-term (term-monom x)
|
---|
327 | (funcall (ring-div ring) (term-coeff x) c)))
|
---|
328 | (poly-termlist p))
|
---|
329 | (poly-sugar p))
|
---|
330 | c))))
|
---|
331 |
|
---|
332 | (defun poly-content (ring p)
|
---|
333 | "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
|
---|
334 | to compute the greatest common divisor."
|
---|
335 | (declare (type poly p))
|
---|
336 | (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
|
---|
337 |
|
---|
338 | |
---|
339 |
|
---|
340 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
341 | ;;
|
---|
342 | ;; An implementation of the division algorithm
|
---|
343 | ;;
|
---|
344 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
345 |
|
---|
346 | (defun grobner-op (ring c1 c2 m f g)
|
---|
347 | "Returns C2*F-C1*M*G, where F and G are polynomials M is a monomial.
|
---|
348 | Assume that the leading terms will cancel."
|
---|
349 | #+grobner-check(funcall (ring-zerop ring)
|
---|
350 | (funcall (ring-sub ring)
|
---|
351 | (funcall (ring-mul ring) c2 (poly-lc f))
|
---|
352 | (funcall (ring-mul ring) c1 (poly-lc g))))
|
---|
353 | #+grobner-check(monom-equal-p (poly-lm f) (monom-mul m (poly-lm g)))
|
---|
354 | ;; Note that we can drop the leading terms of f ang g
|
---|
355 | (poly-sub ring
|
---|
356 | (scalar-times-poly-1 ring c2 f)
|
---|
357 | (scalar-times-poly-1 ring c1 (monom-times-poly m g))))
|
---|
358 |
|
---|
359 | (defun poly-pseudo-divide (ring f fl)
|
---|
360 | "Pseudo-divide a polynomial F by the list of polynomials FL. Return
|
---|
361 | multiple values. The first value is a list of quotients A. The second
|
---|
362 | value is the remainder R. The third argument is a scalar coefficient
|
---|
363 | C, such that C*F can be divided by FL within the ring of coefficients,
|
---|
364 | which is not necessarily a field. Finally, the fourth value is an
|
---|
365 | integer count of the number of reductions performed. The resulting
|
---|
366 | objects satisfy the equation: C*F= sum A[i]*FL[i] + R."
|
---|
367 | (declare (type poly f) (list fl))
|
---|
368 | (do ((r (make-poly-zero))
|
---|
369 | (c (funcall (ring-unit ring)))
|
---|
370 | (a (make-list (length fl) :initial-element (make-poly-zero)))
|
---|
371 | (division-count 0)
|
---|
372 | (p f))
|
---|
373 | ((poly-zerop p)
|
---|
374 | (debug-cgb "~&~3T~d reduction~:p" division-count)
|
---|
375 | (when (poly-zerop r) (debug-cgb " ---> 0"))
|
---|
376 | (values (mapcar #'poly-nreverse a) (poly-nreverse r) c division-count))
|
---|
377 | (declare (fixnum division-count))
|
---|
378 | (do ((fl fl (rest fl)) ;scan list of divisors
|
---|
379 | (b a (rest b)))
|
---|
380 | ((cond
|
---|
381 | ((endp fl) ;no division occurred
|
---|
382 | (push (poly-lt p) (poly-termlist r)) ;move lt(p) to remainder
|
---|
383 | (setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
|
---|
384 | (pop (poly-termlist p)) ;remove lt(p) from p
|
---|
385 | t)
|
---|
386 | ((monom-divides-p (poly-lm (car fl)) (poly-lm p)) ;division occurred
|
---|
387 | (incf division-count)
|
---|
388 | (multiple-value-bind (gcd c1 c2)
|
---|
389 | (funcall (ring-ezgcd ring) (poly-lc (car fl)) (poly-lc p))
|
---|
390 | (declare (ignore gcd))
|
---|
391 | (let ((m (monom-div (poly-lm p) (poly-lm (car fl)))))
|
---|
392 | ;; Multiply the equation c*f=sum ai*fi+r+p by c1.
|
---|
393 | (mapl #'(lambda (x)
|
---|
394 | (setf (car x) (scalar-times-poly ring c1 (car x))))
|
---|
395 | a)
|
---|
396 | (setf r (scalar-times-poly ring c1 r)
|
---|
397 | c (funcall (ring-mul ring) c c1)
|
---|
398 | p (grobner-op ring c2 c1 m p (car fl)))
|
---|
399 | (push (make-term m c2) (poly-termlist (car b))))
|
---|
400 | t)))))))
|
---|
401 |
|
---|
402 | (defun poly-exact-divide (ring f g)
|
---|
403 | "Divide a polynomial F by another polynomial G. Assume that exact division
|
---|
404 | with no remainder is possible. Returns the quotient."
|
---|
405 | (declare (type poly f g))
|
---|
406 | (multiple-value-bind (quot rem coeff division-count)
|
---|
407 | (poly-pseudo-divide ring f (list g))
|
---|
408 | (declare (ignore division-count coeff)
|
---|
409 | (list quot)
|
---|
410 | (type poly rem)
|
---|
411 | (type fixnum division-count))
|
---|
412 | (unless (poly-zerop rem) (error "Exact division failed."))
|
---|
413 | (car quot)))
|
---|
414 |
|
---|
415 | |
---|
416 |
|
---|
417 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
418 | ;;
|
---|
419 | ;; An implementation of the normal form
|
---|
420 | ;;
|
---|
421 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
422 |
|
---|
423 | (defun normal-form-step (ring fl p r c division-count
|
---|
424 | &aux (g (find (poly-lm p) fl
|
---|
425 | :test #'monom-divisible-by-p
|
---|
426 | :key #'poly-lm)))
|
---|
427 | (cond
|
---|
428 | (g ;division possible
|
---|
429 | (incf division-count)
|
---|
430 | (multiple-value-bind (gcd cg cp)
|
---|
431 | (funcall (ring-ezgcd ring) (poly-lc g) (poly-lc p))
|
---|
432 | (declare (ignore gcd))
|
---|
433 | (let ((m (monom-div (poly-lm p) (poly-lm g))))
|
---|
434 | ;; Multiply the equation c*f=sum ai*fi+r+p by cg.
|
---|
435 | (setf r (scalar-times-poly ring cg r)
|
---|
436 | c (funcall (ring-mul ring) c cg)
|
---|
437 | ;; p := cg*p-cp*m*g
|
---|
438 | p (grobner-op ring cp cg m p g))))
|
---|
439 | (debug-cgb "/"))
|
---|
440 | (t ;no division possible
|
---|
441 | (push (poly-lt p) (poly-termlist r)) ;move lt(p) to remainder
|
---|
442 | (setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
|
---|
443 | (pop (poly-termlist p)) ;remove lt(p) from p
|
---|
444 | (debug-cgb "+")))
|
---|
445 | (values p r c division-count))
|
---|
446 |
|
---|
447 | ;; Merge it sometime with poly-pseudo-divide
|
---|
448 | (defun normal-form (ring f fl &optional (top-reduction-only $poly_top_reduction_only))
|
---|
449 | ;; Loop invariant: c*f0=sum ai*fi+r+f, where f0 is the initial value of f
|
---|
450 | #+grobner-check(when (null fl) (warn "normal-form: empty divisor list."))
|
---|
451 | (do ((r (make-poly-zero))
|
---|
452 | (c (funcall (ring-unit ring)))
|
---|
453 | (division-count 0))
|
---|
454 | ((or (poly-zerop f)
|
---|
455 | ;;(endp fl)
|
---|
456 | (and top-reduction-only (not (poly-zerop r))))
|
---|
457 | (progn
|
---|
458 | (debug-cgb "~&~3T~d reduction~:p" division-count)
|
---|
459 | (when (poly-zerop r)
|
---|
460 | (debug-cgb " ---> 0")))
|
---|
461 | (setf (poly-termlist f) (nreconc (poly-termlist r) (poly-termlist f)))
|
---|
462 | (values f c division-count))
|
---|
463 | (declare (fixnum division-count)
|
---|
464 | (type poly r))
|
---|
465 | (multiple-value-setq (f r c division-count)
|
---|
466 | (normal-form-step ring fl f r c division-count))))
|
---|
467 |
|
---|
468 | |
---|
469 |
|
---|
470 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
471 | ;;
|
---|
472 | ;; These are provided mostly for debugging purposes To enable
|
---|
473 | ;; verification of grobner bases with BUCHBERGER-CRITERION, do
|
---|
474 | ;; (pushnew :grobner-check *features*) and compile/load this file.
|
---|
475 | ;; With this feature, the calculations will slow down CONSIDERABLY.
|
---|
476 | ;;
|
---|
477 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
478 |
|
---|
479 | (defun buchberger-criterion (ring g)
|
---|
480 | "Returns T if G is a Grobner basis, by using the Buchberger
|
---|
481 | criterion: for every two polynomials h1 and h2 in G the S-polynomial
|
---|
482 | S(h1,h2) reduces to 0 modulo G."
|
---|
483 | (every
|
---|
484 | #'poly-zerop
|
---|
485 | (makelist (normal-form ring (spoly ring (elt g i) (elt g j)) g nil)
|
---|
486 | (i 0 (- (length g) 2))
|
---|
487 | (j (1+ i) (1- (length g))))))
|
---|
488 |
|
---|
489 | (defun grobner-test (ring g f)
|
---|
490 | "Test whether G is a Grobner basis and F is contained in G. Return T
|
---|
491 | upon success and NIL otherwise."
|
---|
492 | (debug-cgb "~&GROBNER CHECK: ")
|
---|
493 | (let (($poly_grobner_debug nil)
|
---|
494 | (stat1 (buchberger-criterion ring g))
|
---|
495 | (stat2
|
---|
496 | (every #'poly-zerop
|
---|
497 | (makelist (normal-form ring (copy-tree (elt f i)) g nil)
|
---|
498 | (i 0 (1- (length f)))))))
|
---|
499 | (unless stat1 (error "~&Buchberger criterion failed."))
|
---|
500 | (unless stat2
|
---|
501 | (error "~&Original polys not in ideal spanned by Grobner.")))
|
---|
502 | (debug-cgb "~&GROBNER CHECK END")
|
---|
503 | t)
|
---|
504 |
|
---|
505 | |
---|
506 |
|
---|
507 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
508 | ;;
|
---|
509 | ;; Pair queue implementation
|
---|
510 | ;;
|
---|
511 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
512 |
|
---|
513 | (defun sugar-pair-key (p q &aux (lcm (monom-lcm (poly-lm p) (poly-lm q)))
|
---|
514 | (d (monom-sugar lcm)))
|
---|
515 | "Returns list (S LCM-TOTAL-DEGREE) where S is the sugar of the S-polynomial of
|
---|
516 | polynomials P and Q, and LCM-TOTAL-DEGREE is the degree of is LCM(LM(P),LM(Q))."
|
---|
517 | (declare (type poly p q) (type monom lcm) (type fixnum d))
|
---|
518 | (cons (max
|
---|
519 | (+ (- d (monom-sugar (poly-lm p))) (poly-sugar p))
|
---|
520 | (+ (- d (monom-sugar (poly-lm q))) (poly-sugar q)))
|
---|
521 | lcm))
|
---|
522 |
|
---|
523 | (defstruct (pair
|
---|
524 | (:constructor make-pair (first second
|
---|
525 | &aux
|
---|
526 | (sugar (car (sugar-pair-key first second)))
|
---|
527 | (division-data nil))))
|
---|
528 | (first nil :type poly)
|
---|
529 | (second nil :type poly)
|
---|
530 | (sugar 0 :type fixnum)
|
---|
531 | (division-data nil :type list))
|
---|
532 |
|
---|
533 | ;;(defun pair-sugar (pair &aux (p (pair-first pair)) (q (pair-second pair)))
|
---|
534 | ;; (car (sugar-pair-key p q)))
|
---|
535 |
|
---|
536 | (defun sugar-order (x y)
|
---|
537 | "Pair order based on sugar, ties broken by normal strategy."
|
---|
538 | (declare (type cons x y))
|
---|
539 | (or (< (car x) (car y))
|
---|
540 | (and (= (car x) (car y))
|
---|
541 | (< (monom-total-degree (cdr x))
|
---|
542 | (monom-total-degree (cdr y))))))
|
---|
543 |
|
---|
544 | (defvar *pair-key-function* #'sugar-pair-key
|
---|
545 | "Function that, given two polynomials as argument, computed the key
|
---|
546 | in the pair queue.")
|
---|
547 |
|
---|
548 | (defvar *pair-order* #'sugar-order
|
---|
549 | "Function that orders the keys of pairs.")
|
---|
550 |
|
---|
551 | (defun make-pair-queue ()
|
---|
552 | "Constructs a priority queue for critical pairs."
|
---|
553 | (make-priority-queue
|
---|
554 | :element-type 'pair
|
---|
555 | :element-key #'(lambda (pair) (funcall *pair-key-function* (pair-first pair) (pair-second pair)))
|
---|
556 | :test *pair-order*))
|
---|
557 |
|
---|
558 | (defun pair-queue-initialize (pq f start
|
---|
559 | &aux
|
---|
560 | (s (1- (length f)))
|
---|
561 | (b (nconc (makelist (make-pair (elt f i) (elt f j))
|
---|
562 | (i 0 (1- start)) (j start s))
|
---|
563 | (makelist (make-pair (elt f i) (elt f j))
|
---|
564 | (i start (1- s)) (j (1+ i) s)))))
|
---|
565 | "Initializes the priority for critical pairs. F is the initial list of polynomials.
|
---|
566 | START is the first position beyond the elements which form a partial
|
---|
567 | grobner basis, i.e. satisfy the Buchberger criterion."
|
---|
568 | (declare (type priority-queue pq) (type fixnum start))
|
---|
569 | (dolist (pair b pq)
|
---|
570 | (priority-queue-insert pq pair)))
|
---|
571 |
|
---|
572 | (defun pair-queue-insert (b pair)
|
---|
573 | (priority-queue-insert b pair))
|
---|
574 |
|
---|
575 | (defun pair-queue-remove (b)
|
---|
576 | (priority-queue-remove b))
|
---|
577 |
|
---|
578 | (defun pair-queue-size (b)
|
---|
579 | (priority-queue-size b))
|
---|
580 |
|
---|
581 | (defun pair-queue-empty-p (b)
|
---|
582 | (priority-queue-empty-p b))
|
---|
583 |
|
---|
584 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
585 | ;;
|
---|
586 | ;; Buchberger Algorithm Implementation
|
---|
587 | ;;
|
---|
588 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
589 |
|
---|
590 | (defun buchberger (ring f start &optional (top-reduction-only $poly_top_reduction_only))
|
---|
591 | "An implementation of the Buchberger algorithm. Return Grobner basis
|
---|
592 | of the ideal generated by the polynomial list F. Polynomials 0 to
|
---|
593 | START-1 are assumed to be a Grobner basis already, so that certain
|
---|
594 | critical pairs will not be examined. If TOP-REDUCTION-ONLY set, top
|
---|
595 | reduction will be preformed. This function assumes that all polynomials
|
---|
596 | in F are non-zero."
|
---|
597 | (declare (type fixnum start))
|
---|
598 | (when (endp f) (return-from buchberger f)) ;cut startup costs
|
---|
599 | (debug-cgb "~&GROBNER BASIS - BUCHBERGER ALGORITHM")
|
---|
600 | (when (plusp start) (debug-cgb "~&INCREMENTAL:~d done" start))
|
---|
601 | #+grobner-check (when (plusp start)
|
---|
602 | (grobner-test ring (subseq f 0 start) (subseq f 0 start)))
|
---|
603 | ;;Initialize critical pairs
|
---|
604 | (let ((b (pair-queue-initialize (make-pair-queue)
|
---|
605 | f start))
|
---|
606 | (b-done (make-hash-table :test #'equal)))
|
---|
607 | (declare (type priority-queue b) (type hash-table b-done))
|
---|
608 | (dotimes (i (1- start))
|
---|
609 | (do ((j (1+ i) (1+ j))) ((>= j start))
|
---|
610 | (setf (gethash (list (elt f i) (elt f j)) b-done) t)))
|
---|
611 | (do ()
|
---|
612 | ((pair-queue-empty-p b)
|
---|
613 | #+grobner-check(grobner-test ring f f)
|
---|
614 | (debug-cgb "~&GROBNER END")
|
---|
615 | f)
|
---|
616 | (let ((pair (pair-queue-remove b)))
|
---|
617 | (declare (type pair pair))
|
---|
618 | (cond
|
---|
619 | ((criterion-1 pair) nil)
|
---|
620 | ((criterion-2 pair b-done f) nil)
|
---|
621 | (t
|
---|
622 | (let ((sp (normal-form ring (spoly ring (pair-first pair)
|
---|
623 | (pair-second pair))
|
---|
624 | f top-reduction-only)))
|
---|
625 | (declare (type poly sp))
|
---|
626 | (cond
|
---|
627 | ((poly-zerop sp)
|
---|
628 | nil)
|
---|
629 | (t
|
---|
630 | (setf sp (poly-primitive-part ring sp)
|
---|
631 | f (nconc f (list sp)))
|
---|
632 | ;; Add new critical pairs
|
---|
633 | (dolist (h f)
|
---|
634 | (pair-queue-insert b (make-pair h sp)))
|
---|
635 | (debug-cgb "~&Sugar: ~d Polynomials: ~d; Pairs left: ~d; Pairs done: ~d;"
|
---|
636 | (pair-sugar pair) (length f) (pair-queue-size b)
|
---|
637 | (hash-table-count b-done)))))))
|
---|
638 | (setf (gethash (list (pair-first pair) (pair-second pair)) b-done)
|
---|
639 | t)))))
|
---|
640 |
|
---|
641 | (defun parallel-buchberger (ring f start &optional (top-reduction-only $poly_top_reduction_only))
|
---|
642 | "An implementation of the Buchberger algorithm. Return Grobner basis
|
---|
643 | of the ideal generated by the polynomial list F. Polynomials 0 to
|
---|
644 | START-1 are assumed to be a Grobner basis already, so that certain
|
---|
645 | critical pairs will not be examined. If TOP-REDUCTION-ONLY set, top
|
---|
646 | reduction will be preformed."
|
---|
647 | (declare (ignore top-reduction-only)
|
---|
648 | (type fixnum start))
|
---|
649 | (when (endp f) (return-from parallel-buchberger f)) ;cut startup costs
|
---|
650 | (debug-cgb "~&GROBNER BASIS - PARALLEL-BUCHBERGER ALGORITHM")
|
---|
651 | (when (plusp start) (debug-cgb "~&INCREMENTAL:~d done" start))
|
---|
652 | #+grobner-check (when (plusp start)
|
---|
653 | (grobner-test ring (subseq f 0 start) (subseq f 0 start)))
|
---|
654 | ;;Initialize critical pairs
|
---|
655 | (let ((b (pair-queue-initialize (make-pair-queue) f start))
|
---|
656 | (b-done (make-hash-table :test #'equal)))
|
---|
657 | (declare (type priority-queue b)
|
---|
658 | (type hash-table b-done))
|
---|
659 | (dotimes (i (1- start))
|
---|
660 | (do ((j (1+ i) (1+ j))) ((>= j start))
|
---|
661 | (declare (type fixnum j))
|
---|
662 | (setf (gethash (list (elt f i) (elt f j)) b-done) t)))
|
---|
663 | (do ()
|
---|
664 | ((pair-queue-empty-p b)
|
---|
665 | #+grobner-check(grobner-test ring f f)
|
---|
666 | (debug-cgb "~&GROBNER END")
|
---|
667 | f)
|
---|
668 | (let ((pair (pair-queue-remove b)))
|
---|
669 | (when (null (pair-division-data pair))
|
---|
670 | (setf (pair-division-data pair) (list (spoly ring
|
---|
671 | (pair-first pair)
|
---|
672 | (pair-second pair))
|
---|
673 | (make-poly-zero)
|
---|
674 | (funcall (ring-unit ring))
|
---|
675 | 0)))
|
---|
676 | (cond
|
---|
677 | ((criterion-1 pair) nil)
|
---|
678 | ((criterion-2 pair b-done f) nil)
|
---|
679 | (t
|
---|
680 | (let* ((dd (pair-division-data pair))
|
---|
681 | (p (first dd))
|
---|
682 | (sp (second dd))
|
---|
683 | (c (third dd))
|
---|
684 | (division-count (fourth dd)))
|
---|
685 | (cond
|
---|
686 | ((poly-zerop p) ;normal form completed
|
---|
687 | (debug-cgb "~&~3T~d reduction~:p" division-count)
|
---|
688 | (cond
|
---|
689 | ((poly-zerop sp)
|
---|
690 | (debug-cgb " ---> 0")
|
---|
691 | nil)
|
---|
692 | (t
|
---|
693 | (setf sp (poly-nreverse sp)
|
---|
694 | sp (poly-primitive-part ring sp)
|
---|
695 | f (nconc f (list sp)))
|
---|
696 | ;; Add new critical pairs
|
---|
697 | (dolist (h f)
|
---|
698 | (pair-queue-insert b (make-pair h sp)))
|
---|
699 | (debug-cgb "~&Sugar: ~d Polynomials: ~d; Pairs left: ~d; Pairs done: ~d;"
|
---|
700 | (pair-sugar pair) (length f) (pair-queue-size b)
|
---|
701 | (hash-table-count b-done))))
|
---|
702 | (setf (gethash (list (pair-first pair) (pair-second pair))
|
---|
703 | b-done) t))
|
---|
704 | (t ;normal form not complete
|
---|
705 | (do ()
|
---|
706 | ((cond
|
---|
707 | ((> (poly-sugar sp) (pair-sugar pair))
|
---|
708 | (debug-cgb "(~a)?" (poly-sugar sp))
|
---|
709 | t)
|
---|
710 | ((poly-zerop p)
|
---|
711 | (debug-cgb ".")
|
---|
712 | t)
|
---|
713 | (t nil))
|
---|
714 | (setf (first dd) p
|
---|
715 | (second dd) sp
|
---|
716 | (third dd) c
|
---|
717 | (fourth dd) division-count
|
---|
718 | (pair-sugar pair) (poly-sugar sp))
|
---|
719 | (pair-queue-insert b pair))
|
---|
720 | (multiple-value-setq (p sp c division-count)
|
---|
721 | (normal-form-step ring f p sp c division-count))))))))))))
|
---|
722 |
|
---|
723 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
724 | ;;
|
---|
725 | ;; Grobner Criteria
|
---|
726 | ;;
|
---|
727 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
728 |
|
---|
729 | (defun criterion-1 (pair)
|
---|
730 | "Returns T if the leading monomials of the two polynomials
|
---|
731 | in G pointed to by the integers in PAIR have disjoint (relatively prime)
|
---|
732 | monomials. This test is known as the first Buchberger criterion."
|
---|
733 | (declare (type pair pair))
|
---|
734 | (let ((f (pair-first pair))
|
---|
735 | (g (pair-second pair)))
|
---|
736 | (when (monom-rel-prime-p (poly-lm f) (poly-lm g))
|
---|
737 | (debug-cgb ":1")
|
---|
738 | (return-from criterion-1 t))))
|
---|
739 |
|
---|
740 | (defun criterion-2 (pair b-done partial-basis
|
---|
741 | &aux (f (pair-first pair)) (g (pair-second pair))
|
---|
742 | (place :before))
|
---|
743 | "Returns T if the leading monomial of some element P of
|
---|
744 | PARTIAL-BASIS divides the LCM of the leading monomials of the two
|
---|
745 | polynomials in the polynomial list PARTIAL-BASIS, and P paired with
|
---|
746 | each of the polynomials pointed to by the the PAIR has already been
|
---|
747 | treated, as indicated by the absence in the hash table B-done."
|
---|
748 | (declare (type pair pair) (type hash-table b-done)
|
---|
749 | (type poly f g))
|
---|
750 | ;; In the code below we assume that pairs are ordered as follows:
|
---|
751 | ;; if PAIR is (I J) then I appears before J in the PARTIAL-BASIS.
|
---|
752 | ;; We traverse the list PARTIAL-BASIS and keep track of where we
|
---|
753 | ;; are, so that we can produce the pairs in the correct order
|
---|
754 | ;; when we check whether they have been processed, i.e they
|
---|
755 | ;; appear in the hash table B-done
|
---|
756 | (dolist (h partial-basis nil)
|
---|
757 | (cond
|
---|
758 | ((eq h f)
|
---|
759 | #+grobner-check(assert (eq place :before))
|
---|
760 | (setf place :in-the-middle))
|
---|
761 | ((eq h g)
|
---|
762 | #+grobner-check(assert (eq place :in-the-middle))
|
---|
763 | (setf place :after))
|
---|
764 | ((and (monom-divides-monom-lcm-p (poly-lm h) (poly-lm f) (poly-lm g))
|
---|
765 | (gethash (case place
|
---|
766 | (:before (list h f))
|
---|
767 | ((:in-the-middle :after) (list f h)))
|
---|
768 | b-done)
|
---|
769 | (gethash (case place
|
---|
770 | ((:before :in-the-middle) (list h g))
|
---|
771 | (:after (list g h)))
|
---|
772 | b-done))
|
---|
773 | (debug-cgb ":2")
|
---|
774 | (return-from criterion-2 t)))))
|
---|
775 |
|
---|
776 | |
---|
777 |
|
---|
778 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
779 | ;;
|
---|
780 | ;; An implementation of the algorithm of Gebauer and Moeller, as
|
---|
781 | ;; described in the book of Becker-Weispfenning, p. 232
|
---|
782 | ;;
|
---|
783 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
784 |
|
---|
785 | (defun gebauer-moeller (ring f start &optional (top-reduction-only $poly_top_reduction_only))
|
---|
786 | "Compute Grobner basis by using the algorithm of Gebauer and
|
---|
787 | Moeller. This algorithm is described as BUCHBERGERNEW2 in the book by
|
---|
788 | Becker-Weispfenning entitled ``Grobner Bases''. This function assumes
|
---|
789 | that all polynomials in F are non-zero."
|
---|
790 | (declare (ignore top-reduction-only)
|
---|
791 | (type fixnum start))
|
---|
792 | (cond
|
---|
793 | ((endp f) (return-from gebauer-moeller nil))
|
---|
794 | ((endp (cdr f))
|
---|
795 | (return-from gebauer-moeller (list (poly-primitive-part ring (car f))))))
|
---|
796 | (debug-cgb "~&GROBNER BASIS - GEBAUER MOELLER ALGORITHM")
|
---|
797 | (when (plusp start) (debug-cgb "~&INCREMENTAL:~d done" start))
|
---|
798 | #+grobner-check (when (plusp start)
|
---|
799 | (grobner-test ring (subseq f 0 start) (subseq f 0 start)))
|
---|
800 | (let ((b (make-pair-queue))
|
---|
801 | (g (subseq f 0 start))
|
---|
802 | (f1 (subseq f start)))
|
---|
803 | (do () ((endp f1))
|
---|
804 | (multiple-value-setq (g b)
|
---|
805 | (gebauer-moeller-update g b (poly-primitive-part ring (pop f1)))))
|
---|
806 | (do () ((pair-queue-empty-p b))
|
---|
807 | (let* ((pair (pair-queue-remove b))
|
---|
808 | (g1 (pair-first pair))
|
---|
809 | (g2 (pair-second pair))
|
---|
810 | (h (normal-form ring (spoly ring g1 g2)
|
---|
811 | g
|
---|
812 | nil #| Always fully reduce! |#
|
---|
813 | )))
|
---|
814 | (unless (poly-zerop h)
|
---|
815 | (setf h (poly-primitive-part ring h))
|
---|
816 | (multiple-value-setq (g b)
|
---|
817 | (gebauer-moeller-update g b h))
|
---|
818 | (debug-cgb "~&Sugar: ~d Polynomials: ~d; Pairs left: ~d~%"
|
---|
819 | (pair-sugar pair) (length g) (pair-queue-size b))
|
---|
820 | )))
|
---|
821 | #+grobner-check(grobner-test ring g f)
|
---|
822 | (debug-cgb "~&GROBNER END")
|
---|
823 | g))
|
---|
824 |
|
---|
825 | (defun gebauer-moeller-update (g b h
|
---|
826 | &aux
|
---|
827 | c d e
|
---|
828 | (b-new (make-pair-queue))
|
---|
829 | g-new)
|
---|
830 | "An implementation of the auxillary UPDATE algorithm used by the
|
---|
831 | Gebauer-Moeller algorithm. G is a list of polynomials, B is a list of
|
---|
832 | critical pairs and H is a new polynomial which possibly will be added
|
---|
833 | to G. The naming conventions used are very close to the one used in
|
---|
834 | the book of Becker-Weispfenning."
|
---|
835 | (declare
|
---|
836 | #+allegro (dynamic-extent b)
|
---|
837 | (type poly h)
|
---|
838 | (type priority-queue b))
|
---|
839 | (setf c g d nil)
|
---|
840 | (do () ((endp c))
|
---|
841 | (let ((g1 (pop c)))
|
---|
842 | (declare (type poly g1))
|
---|
843 | (when (or (monom-rel-prime-p (poly-lm h) (poly-lm g1))
|
---|
844 | (and
|
---|
845 | (notany #'(lambda (g2) (monom-lcm-divides-monom-lcm-p
|
---|
846 | (poly-lm h) (poly-lm g2)
|
---|
847 | (poly-lm h) (poly-lm g1)))
|
---|
848 | c)
|
---|
849 | (notany #'(lambda (g2) (monom-lcm-divides-monom-lcm-p
|
---|
850 | (poly-lm h) (poly-lm g2)
|
---|
851 | (poly-lm h) (poly-lm g1)))
|
---|
852 | d)))
|
---|
853 | (push g1 d))))
|
---|
854 | (setf e nil)
|
---|
855 | (do () ((endp d))
|
---|
856 | (let ((g1 (pop d)))
|
---|
857 | (declare (type poly g1))
|
---|
858 | (unless (monom-rel-prime-p (poly-lm h) (poly-lm g1))
|
---|
859 | (push g1 e))))
|
---|
860 | (do () ((pair-queue-empty-p b))
|
---|
861 | (let* ((pair (pair-queue-remove b))
|
---|
862 | (g1 (pair-first pair))
|
---|
863 | (g2 (pair-second pair)))
|
---|
864 | (declare (type pair pair)
|
---|
865 | (type poly g1 g2))
|
---|
866 | (when (or (not (monom-divides-monom-lcm-p
|
---|
867 | (poly-lm h)
|
---|
868 | (poly-lm g1) (poly-lm g2)))
|
---|
869 | (monom-lcm-equal-monom-lcm-p
|
---|
870 | (poly-lm g1) (poly-lm h)
|
---|
871 | (poly-lm g1) (poly-lm g2))
|
---|
872 | (monom-lcm-equal-monom-lcm-p
|
---|
873 | (poly-lm h) (poly-lm g2)
|
---|
874 | (poly-lm g1) (poly-lm g2)))
|
---|
875 | (pair-queue-insert b-new (make-pair g1 g2)))))
|
---|
876 | (dolist (g3 e)
|
---|
877 | (pair-queue-insert b-new (make-pair h g3)))
|
---|
878 | (setf g-new nil)
|
---|
879 | (do () ((endp g))
|
---|
880 | (let ((g1 (pop g)))
|
---|
881 | (declare (type poly g1))
|
---|
882 | (unless (monom-divides-p (poly-lm h) (poly-lm g1))
|
---|
883 | (push g1 g-new))))
|
---|
884 | (push h g-new)
|
---|
885 | (values g-new b-new))
|
---|
886 |
|
---|
887 | |
---|
888 |
|
---|
889 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
890 | ;;
|
---|
891 | ;; Standard postprocessing of Grobner bases
|
---|
892 | ;;
|
---|
893 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
894 |
|
---|
895 | (defun reduction (ring plist)
|
---|
896 | "Reduce a list of polynomials PLIST, so that non of the terms in any of
|
---|
897 | the polynomials is divisible by a leading monomial of another
|
---|
898 | polynomial. Return the reduced list."
|
---|
899 | (do ((q plist)
|
---|
900 | (found t))
|
---|
901 | ((not found)
|
---|
902 | (mapcar #'(lambda (x) (poly-primitive-part ring x)) q))
|
---|
903 | ;;Find p in Q such that p is reducible mod Q\{p}
|
---|
904 | (setf found nil)
|
---|
905 | (dolist (x q)
|
---|
906 | (let ((q1 (remove x q)))
|
---|
907 | (multiple-value-bind (h c div-count)
|
---|
908 | (normal-form ring x q1 nil #| not a top reduction! |# )
|
---|
909 | (declare (ignore c))
|
---|
910 | (unless (zerop div-count)
|
---|
911 | (setf found t q q1)
|
---|
912 | (unless (poly-zerop h)
|
---|
913 | (setf q (nconc q1 (list h))))
|
---|
914 | (return)))))))
|
---|
915 |
|
---|
916 | (defun minimization (p)
|
---|
917 | "Returns a sublist of the polynomial list P spanning the same
|
---|
918 | monomial ideal as P but minimal, i.e. no leading monomial
|
---|
919 | of a polynomial in the sublist divides the leading monomial
|
---|
920 | of another polynomial."
|
---|
921 | (do ((q p)
|
---|
922 | (found t))
|
---|
923 | ((not found) q)
|
---|
924 | ;;Find p in Q such that lm(p) is in LM(Q\{p})
|
---|
925 | (setf found nil
|
---|
926 | q (dolist (x q q)
|
---|
927 | (let ((q1 (remove x q)))
|
---|
928 | (when (member-if #'(lambda (p) (monom-divides-p (poly-lm x) (poly-lm p))) q1)
|
---|
929 | (setf found t)
|
---|
930 | (return q1)))))))
|
---|
931 |
|
---|
932 | (defun poly-normalize (ring p &aux (c (poly-lc p)))
|
---|
933 | "Divide a polynomial by its leading coefficient. It assumes
|
---|
934 | that the division is possible, which may not always be the
|
---|
935 | case in rings which are not fields. The exact division operator
|
---|
936 | is assumed to be provided by the RING structure of the
|
---|
937 | COEFFICIENT-RING package."
|
---|
938 | (mapc #'(lambda (term)
|
---|
939 | (setf (term-coeff term) (funcall (ring-div ring) (term-coeff term) c)))
|
---|
940 | (poly-termlist p))
|
---|
941 | p)
|
---|
942 |
|
---|
943 | (defun poly-normalize-list (ring plist)
|
---|
944 | "Divide every polynomial in a list PLIST by its leading coefficient. "
|
---|
945 | (mapcar #'(lambda (x) (poly-normalize ring x)) plist))
|
---|
946 |
|
---|
947 | |
---|
948 |
|
---|
949 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
950 | ;;
|
---|
951 | ;; Algorithm and Pair heuristic selection
|
---|
952 | ;;
|
---|
953 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
954 |
|
---|
955 | (defun find-grobner-function (algorithm)
|
---|
956 | "Return a function which calculates Grobner basis, based on its
|
---|
957 | names. Names currently used are either Lisp symbols, Maxima symbols or
|
---|
958 | keywords."
|
---|
959 | (ecase algorithm
|
---|
960 | ((buchberger :buchberger $buchberger) #'buchberger)
|
---|
961 | ((parallel-buchberger :parallel-buchberger $parallel_buchberger) #'parallel-buchberger)
|
---|
962 | ((gebauer-moeller :gebauer_moeller $gebauer_moeller) #'gebauer-moeller)))
|
---|
963 |
|
---|
964 | (defun grobner (ring f &optional (start 0) (top-reduction-only nil))
|
---|
965 | ;;(setf F (sort F #'< :key #'sugar))
|
---|
966 | (funcall
|
---|
967 | (find-grobner-function $poly_grobner_algorithm)
|
---|
968 | ring f start top-reduction-only))
|
---|
969 |
|
---|
970 | (defun reduced-grobner (ring f &optional (start 0) (top-reduction-only $poly_top_reduction_only))
|
---|
971 | (reduction ring (grobner ring f start top-reduction-only)))
|
---|
972 |
|
---|
973 | (defun set-pair-heuristic (method)
|
---|
974 | "Sets up variables *PAIR-KEY-FUNCTION* and *PAIR-ORDER* used
|
---|
975 | to determine the priority of critical pairs in the priority queue."
|
---|
976 | (ecase method
|
---|
977 | ((sugar :sugar $sugar)
|
---|
978 | (setf *pair-key-function* #'sugar-pair-key
|
---|
979 | *pair-order* #'sugar-order))
|
---|
980 | ; ((minimal-mock-spoly :minimal-mock-spoly $minimal_mock_spoly)
|
---|
981 | ; (setf *pair-key-function* #'mock-spoly
|
---|
982 | ; *pair-order* #'mock-spoly-order))
|
---|
983 | ((minimal-lcm :minimal-lcm $minimal_lcm)
|
---|
984 | (setf *pair-key-function* #'(lambda (p q)
|
---|
985 | (monom-lcm (poly-lm p) (poly-lm q)))
|
---|
986 | *pair-order* #'reverse-monomial-order))
|
---|
987 | ((minimal-total-degree :minimal-total-degree $minimal_total_degree)
|
---|
988 | (setf *pair-key-function* #'(lambda (p q)
|
---|
989 | (monom-total-degree
|
---|
990 | (monom-lcm (poly-lm p) (poly-lm q))))
|
---|
991 | *pair-order* #'<))
|
---|
992 | ((minimal-length :minimal-length $minimal_length)
|
---|
993 | (setf *pair-key-function* #'(lambda (p q)
|
---|
994 | (+ (poly-length p) (poly-length q)))
|
---|
995 | *pair-order* #'<))))
|
---|
996 |
|
---|
997 | |
---|
998 |
|
---|
999 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1000 | ;;
|
---|
1001 | ;; Operations in ideal theory
|
---|
1002 | ;;
|
---|
1003 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1004 |
|
---|
1005 | ;; Does the term depend on variable K?
|
---|
1006 | (defun term-depends-p (term k)
|
---|
1007 | "Return T if the term TERM depends on variable number K."
|
---|
1008 | (monom-depends-p (term-monom term) k))
|
---|
1009 |
|
---|
1010 | ;; Does the polynomial P depend on variable K?
|
---|
1011 | (defun poly-depends-p (p k)
|
---|
1012 | "Return T if the term polynomial P depends on variable number K."
|
---|
1013 | (some #'(lambda (term) (term-depends-p term k)) (poly-termlist p)))
|
---|
1014 |
|
---|
1015 | (defun ring-intersection (plist k)
|
---|
1016 | "This function assumes that polynomial list PLIST is a Grobner basis
|
---|
1017 | and it calculates the intersection with the ring R[x[k+1],...,x[n]], i.e.
|
---|
1018 | it discards polynomials which depend on variables x[0], x[1], ..., x[k]."
|
---|
1019 | (dotimes (i k plist)
|
---|
1020 | (setf plist
|
---|
1021 | (remove-if #'(lambda (p)
|
---|
1022 | (poly-depends-p p i))
|
---|
1023 | plist))))
|
---|
1024 |
|
---|
1025 | (defun elimination-ideal (ring flist k
|
---|
1026 | &optional (top-reduction-only $poly_top_reduction_only) (start 0)
|
---|
1027 | &aux (*monomial-order*
|
---|
1028 | (or *elimination-order*
|
---|
1029 | (elimination-order k))))
|
---|
1030 | (ring-intersection (reduced-grobner ring flist start top-reduction-only) k))
|
---|
1031 |
|
---|
1032 | (defun colon-ideal (ring f g &optional (top-reduction-only $poly_top_reduction_only))
|
---|
1033 | "Returns the reduced Grobner basis of the colon ideal Id(F):Id(G),
|
---|
1034 | where F and G are two lists of polynomials. The colon ideal I:J is
|
---|
1035 | defined as the set of polynomials H such that for all polynomials W in
|
---|
1036 | J the polynomial W*H belongs to I."
|
---|
1037 | (cond
|
---|
1038 | ((endp g)
|
---|
1039 | ;;Id(G) consists of 0 only so W*0=0 belongs to Id(F)
|
---|
1040 | (if (every #'poly-zerop f)
|
---|
1041 | (error "First ideal must be non-zero.")
|
---|
1042 | (list (make-poly
|
---|
1043 | (list (make-term
|
---|
1044 | (make-monom (monom-dimension (poly-lm (find-if-not #'poly-zerop f)))
|
---|
1045 | :initial-element 0)
|
---|
1046 | (funcall (ring-unit ring))))))))
|
---|
1047 | ((endp (cdr g))
|
---|
1048 | (colon-ideal-1 ring f (car g) top-reduction-only))
|
---|
1049 | (t
|
---|
1050 | (ideal-intersection ring
|
---|
1051 | (colon-ideal-1 ring f (car g) top-reduction-only)
|
---|
1052 | (colon-ideal ring f (rest g) top-reduction-only)
|
---|
1053 | top-reduction-only))))
|
---|
1054 |
|
---|
1055 | (defun colon-ideal-1 (ring f g &optional (top-reduction-only $poly_top_reduction_only))
|
---|
1056 | "Returns the reduced Grobner basis of the colon ideal Id(F):Id({G}), where
|
---|
1057 | F is a list of polynomials and G is a polynomial."
|
---|
1058 | (mapcar #'(lambda (x) (poly-exact-divide ring x g)) (ideal-intersection ring f (list g) top-reduction-only)))
|
---|
1059 |
|
---|
1060 |
|
---|
1061 | (defun ideal-intersection (ring f g &optional (top-reduction-only $poly_top_reduction_only)
|
---|
1062 | &aux (*monomial-order* (or *elimination-order*
|
---|
1063 | #'elimination-order-1)))
|
---|
1064 | (mapcar #'poly-contract
|
---|
1065 | (ring-intersection
|
---|
1066 | (reduced-grobner
|
---|
1067 | ring
|
---|
1068 | (append (mapcar #'(lambda (p) (poly-extend p (make-monom 1 :initial-element 1))) f)
|
---|
1069 | (mapcar #'(lambda (p)
|
---|
1070 | (poly-append (poly-extend (poly-uminus ring p)
|
---|
1071 | (make-monom 1 :initial-element 1))
|
---|
1072 | (poly-extend p)))
|
---|
1073 | g))
|
---|
1074 | 0
|
---|
1075 | top-reduction-only)
|
---|
1076 | 1)))
|
---|
1077 |
|
---|
1078 | (defun poly-lcm (ring f g)
|
---|
1079 | "Return LCM (least common multiple) of two polynomials F and G.
|
---|
1080 | The polynomials must be ordered according to monomial order PRED
|
---|
1081 | and their coefficients must be compatible with the RING structure
|
---|
1082 | defined in the COEFFICIENT-RING package."
|
---|
1083 | (cond
|
---|
1084 | ((poly-zerop f) f)
|
---|
1085 | ((poly-zerop g) g)
|
---|
1086 | ((and (endp (cdr (poly-termlist f))) (endp (cdr (poly-termlist g))))
|
---|
1087 | (let ((m (monom-lcm (poly-lm f) (poly-lm g))))
|
---|
1088 | (make-poly-from-termlist (list (make-term m (funcall (ring-lcm ring) (poly-lc f) (poly-lc g)))))))
|
---|
1089 | (t
|
---|
1090 | (multiple-value-bind (f f-cont)
|
---|
1091 | (poly-primitive-part ring f)
|
---|
1092 | (multiple-value-bind (g g-cont)
|
---|
1093 | (poly-primitive-part ring g)
|
---|
1094 | (scalar-times-poly
|
---|
1095 | ring
|
---|
1096 | (funcall (ring-lcm ring) f-cont g-cont)
|
---|
1097 | (poly-primitive-part ring (car (ideal-intersection ring (list f) (list g) nil)))))))))
|
---|
1098 |
|
---|
1099 | ;; Do two Grobner bases yield the same ideal?
|
---|
1100 | (defun grobner-equal (ring g1 g2)
|
---|
1101 | "Returns T if two lists of polynomials G1 and G2, assumed to be Grobner bases,
|
---|
1102 | generate the same ideal, and NIL otherwise."
|
---|
1103 | (and (grobner-subsetp ring g1 g2) (grobner-subsetp ring g2 g1)))
|
---|
1104 |
|
---|
1105 | (defun grobner-subsetp (ring g1 g2)
|
---|
1106 | "Returns T if a list of polynomials G1 generates
|
---|
1107 | an ideal contained in the ideal generated by a polynomial list G2,
|
---|
1108 | both G1 and G2 assumed to be Grobner bases. Returns NIL otherwise."
|
---|
1109 | (every #'(lambda (p) (grobner-member ring p g2)) g1))
|
---|
1110 |
|
---|
1111 | (defun grobner-member (ring p g)
|
---|
1112 | "Returns T if a polynomial P belongs to the ideal generated by the
|
---|
1113 | polynomial list G, which is assumed to be a Grobner basis. Returns NIL otherwise."
|
---|
1114 | (poly-zerop (normal-form ring p g nil)))
|
---|
1115 |
|
---|
1116 | ;; Calculate F : p^inf
|
---|
1117 | (defun ideal-saturation-1 (ring f p start &optional (top-reduction-only $poly_top_reduction_only)
|
---|
1118 | &aux (*monomial-order* (or *elimination-order*
|
---|
1119 | #'elimination-order-1)))
|
---|
1120 | "Returns the reduced Grobner basis of the saturation of the ideal
|
---|
1121 | generated by a polynomial list F in the ideal generated by a single
|
---|
1122 | polynomial P. The saturation ideal is defined as the set of
|
---|
1123 | polynomials H such for some natural number n (* (EXPT P N) H) is in the ideal
|
---|
1124 | F. Geometrically, over an algebraically closed field, this is the set
|
---|
1125 | of polynomials in the ideal generated by F which do not identically
|
---|
1126 | vanish on the variety of P."
|
---|
1127 | (mapcar
|
---|
1128 | #'poly-contract
|
---|
1129 | (ring-intersection
|
---|
1130 | (reduced-grobner
|
---|
1131 | ring
|
---|
1132 | (saturation-extension-1 ring f p)
|
---|
1133 | start top-reduction-only)
|
---|
1134 | 1)))
|
---|
1135 |
|
---|
1136 |
|
---|
1137 |
|
---|
1138 | ;; Calculate F : p1^inf : p2^inf : ... : ps^inf
|
---|
1139 | (defun ideal-polysaturation-1 (ring f plist start &optional (top-reduction-only $poly_top_reduction_only))
|
---|
1140 | "Returns the reduced Grobner basis of the ideal obtained by a
|
---|
1141 | sequence of successive saturations in the polynomials
|
---|
1142 | of the polynomial list PLIST of the ideal generated by the
|
---|
1143 | polynomial list F."
|
---|
1144 | (cond
|
---|
1145 | ((endp plist) (reduced-grobner ring f start top-reduction-only))
|
---|
1146 | (t (let ((g (ideal-saturation-1 ring f (car plist) start top-reduction-only)))
|
---|
1147 | (ideal-polysaturation-1 ring g (rest plist) (length g) top-reduction-only)))))
|
---|
1148 |
|
---|
1149 | (defun ideal-saturation (ring f g start &optional (top-reduction-only $poly_top_reduction_only)
|
---|
1150 | &aux
|
---|
1151 | (k (length g))
|
---|
1152 | (*monomial-order* (or *elimination-order*
|
---|
1153 | (elimination-order k))))
|
---|
1154 | "Returns the reduced Grobner basis of the saturation of the ideal
|
---|
1155 | generated by a polynomial list F in the ideal generated a polynomial
|
---|
1156 | list G. The saturation ideal is defined as the set of polynomials H
|
---|
1157 | such for some natural number n and some P in the ideal generated by G
|
---|
1158 | the polynomial P**N * H is in the ideal spanned by F. Geometrically,
|
---|
1159 | over an algebraically closed field, this is the set of polynomials in
|
---|
1160 | the ideal generated by F which do not identically vanish on the
|
---|
1161 | variety of G."
|
---|
1162 | (mapcar
|
---|
1163 | #'(lambda (q) (poly-contract q k))
|
---|
1164 | (ring-intersection
|
---|
1165 | (reduced-grobner ring
|
---|
1166 | (polysaturation-extension ring f g)
|
---|
1167 | start
|
---|
1168 | top-reduction-only)
|
---|
1169 | k)))
|
---|
1170 |
|
---|
1171 | (defun ideal-polysaturation (ring f ideal-list start &optional (top-reduction-only $poly_top_reduction_only))
|
---|
1172 | "Returns the reduced Grobner basis of the ideal obtained by a
|
---|
1173 | successive applications of IDEAL-SATURATION to F and lists of
|
---|
1174 | polynomials in the list IDEAL-LIST."
|
---|
1175 | (cond
|
---|
1176 | ((endp ideal-list) f)
|
---|
1177 | (t (let ((h (ideal-saturation ring f (car ideal-list) start top-reduction-only)))
|
---|
1178 | (ideal-polysaturation ring h (rest ideal-list) (length h) top-reduction-only)))))
|
---|
1179 |
|
---|
1180 | |
---|
1181 |
|
---|
1182 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1183 | ;;
|
---|
1184 | ;; Set up the coefficients to be polynomials
|
---|
1185 | ;;
|
---|
1186 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1187 |
|
---|
1188 | ;; (defun poly-ring (ring vars)
|
---|
1189 | ;; (make-ring
|
---|
1190 | ;; :parse #'(lambda (expr) (poly-eval ring expr vars))
|
---|
1191 | ;; :unit #'(lambda () (poly-unit ring (length vars)))
|
---|
1192 | ;; :zerop #'poly-zerop
|
---|
1193 | ;; :add #'(lambda (x y) (poly-add ring x y))
|
---|
1194 | ;; :sub #'(lambda (x y) (poly-sub ring x y))
|
---|
1195 | ;; :uminus #'(lambda (x) (poly-uminus ring x))
|
---|
1196 | ;; :mul #'(lambda (x y) (poly-mul ring x y))
|
---|
1197 | ;; :div #'(lambda (x y) (poly-exact-divide ring x y))
|
---|
1198 | ;; :lcm #'(lambda (x y) (poly-lcm ring x y))
|
---|
1199 | ;; :ezgcd #'(lambda (x y &aux (gcd (poly-gcd ring x y)))
|
---|
1200 | ;; (values gcd
|
---|
1201 | ;; (poly-exact-divide ring x gcd)
|
---|
1202 | ;; (poly-exact-divide ring y gcd)))
|
---|
1203 | ;; :gcd #'(lambda (x y) (poly-gcd x y))))
|
---|
1204 |
|
---|
1205 | |
---|
1206 |
|
---|
1207 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1208 | ;;
|
---|
1209 | ;; Conversion from internal to infix form
|
---|
1210 | ;;
|
---|
1211 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1212 |
|
---|
1213 | (defun coerce-to-infix (poly-type object vars)
|
---|
1214 | (case poly-type
|
---|
1215 | (:termlist
|
---|
1216 | `(+ ,@(mapcar #'(lambda (term) (coerce-to-infix :term term vars)) object)))
|
---|
1217 | (:polynomial
|
---|
1218 | (coerce-to-infix :termlist (poly-termlist object) vars))
|
---|
1219 | (:poly-list
|
---|
1220 | `([ ,@(mapcar #'(lambda (p) (coerce-to-infix :polynomial p vars)) object)))
|
---|
1221 | (:term
|
---|
1222 | `(* ,(term-coeff object)
|
---|
1223 | ,@(mapcar #'(lambda (var power) `(expt ,var ,power))
|
---|
1224 | vars (monom-exponents (term-monom object)))))
|
---|
1225 | (otherwise
|
---|
1226 | object)))
|
---|
1227 |
|
---|
1228 | |
---|
1229 |
|
---|
1230 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1231 | ;;
|
---|
1232 | ;; Maxima expression ring
|
---|
1233 | ;;
|
---|
1234 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1235 |
|
---|
1236 | (defparameter *expression-ring*
|
---|
1237 | (make-ring
|
---|
1238 | ;;(defun coeff-zerop (expr) (meval1 `(($is) (($equal) ,expr 0))))
|
---|
1239 | :parse #'(lambda (expr)
|
---|
1240 | (when modulus (setf expr ($rat expr)))
|
---|
1241 | expr)
|
---|
1242 | :unit #'(lambda () (if modulus ($rat 1) 1))
|
---|
1243 | :zerop #'(lambda (expr)
|
---|
1244 | ;;When is exactly a maxima expression equal to 0?
|
---|
1245 | (cond ((numberp expr)
|
---|
1246 | (= expr 0))
|
---|
1247 | ((atom expr) nil)
|
---|
1248 | (t
|
---|
1249 | (case (caar expr)
|
---|
1250 | (mrat (eql ($ratdisrep expr) 0))
|
---|
1251 | (otherwise (eql ($totaldisrep expr) 0))))))
|
---|
1252 | :add #'(lambda (x y) (m+ x y))
|
---|
1253 | :sub #'(lambda (x y) (m- x y))
|
---|
1254 | :uminus #'(lambda (x) (m- x))
|
---|
1255 | :mul #'(lambda (x y) (m* x y))
|
---|
1256 | ;;(defun coeff-div (x y) (cadr ($divide x y)))
|
---|
1257 | :div #'(lambda (x y) (m// x y))
|
---|
1258 | :lcm #'(lambda (x y) (meval1 `((|$LCM|) ,x ,y)))
|
---|
1259 | :ezgcd #'(lambda (x y) (apply #'values (cdr ($ezgcd ($totaldisrep x) ($totaldisrep y)))))
|
---|
1260 | ;; :gcd #'(lambda (x y) (second ($ezgcd x y)))))
|
---|
1261 | :gcd #'(lambda (x y) ($gcd x y))))
|
---|
1262 |
|
---|
1263 | (defvar *maxima-ring* *expression-ring*
|
---|
1264 | "The ring of coefficients, over which all polynomials
|
---|
1265 | are assumed to be defined.")
|
---|
1266 |
|
---|
1267 | |
---|
1268 |
|
---|
1269 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1270 | ;;
|
---|
1271 | ;; Maxima expression parsing
|
---|
1272 | ;;
|
---|
1273 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1274 |
|
---|
1275 | (defun equal-test-p (expr1 expr2)
|
---|
1276 | (alike1 expr1 expr2))
|
---|
1277 |
|
---|
1278 | (defun coerce-maxima-list (expr)
|
---|
1279 | "convert a maxima list to lisp list."
|
---|
1280 | (cond
|
---|
1281 | ((and (consp (car expr)) (eql (caar expr) 'mlist)) (cdr expr))
|
---|
1282 | (t expr)))
|
---|
1283 |
|
---|
1284 | (defun free-of-vars (expr vars) (apply #'$freeof `(,@vars ,expr)))
|
---|
1285 |
|
---|
1286 | (defun parse-poly (expr vars &aux (vars (coerce-maxima-list vars)))
|
---|
1287 | "Convert a maxima polynomial expression EXPR in variables VARS to internal form."
|
---|
1288 | (labels ((parse (arg) (parse-poly arg vars))
|
---|
1289 | (parse-list (args) (mapcar #'parse args)))
|
---|
1290 | (cond
|
---|
1291 | ((eql expr 0) (make-poly-zero))
|
---|
1292 | ((member expr vars :test #'equal-test-p)
|
---|
1293 | (let ((pos (position expr vars :test #'equal-test-p)))
|
---|
1294 | (make-variable *maxima-ring* (length vars) pos)))
|
---|
1295 | ((free-of-vars expr vars)
|
---|
1296 | ;;This means that variable-free CRE and Poisson forms will be converted
|
---|
1297 | ;;to coefficients intact
|
---|
1298 | (coerce-coeff *maxima-ring* expr vars))
|
---|
1299 | (t
|
---|
1300 | (case (caar expr)
|
---|
1301 | (mplus (reduce #'(lambda (x y) (poly-add *maxima-ring* x y)) (parse-list (cdr expr))))
|
---|
1302 | (mminus (poly-uminus *maxima-ring* (parse (cadr expr))))
|
---|
1303 | (mtimes
|
---|
1304 | (if (endp (cddr expr)) ;unary
|
---|
1305 | (parse (cdr expr))
|
---|
1306 | (reduce #'(lambda (p q) (poly-mul *maxima-ring* p q)) (parse-list (cdr expr)))))
|
---|
1307 | (mexpt
|
---|
1308 | (cond
|
---|
1309 | ((member (cadr expr) vars :test #'equal-test-p)
|
---|
1310 | ;;Special handling of (expt var pow)
|
---|
1311 | (let ((pos (position (cadr expr) vars :test #'equal-test-p)))
|
---|
1312 | (make-variable *maxima-ring* (length vars) pos (caddr expr))))
|
---|
1313 | ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
|
---|
1314 | ;; Negative power means division in coefficient ring
|
---|
1315 | ;; Non-integer power means non-polynomial coefficient
|
---|
1316 | (mtell "~%Warning: Expression ~%~M~%contains power which is not a positive integer. Parsing as coefficient.~%"
|
---|
1317 | expr)
|
---|
1318 | (coerce-coeff *maxima-ring* expr vars))
|
---|
1319 | (t (poly-expt *maxima-ring* (parse (cadr expr)) (caddr expr)))))
|
---|
1320 | (mrat (parse ($ratdisrep expr)))
|
---|
1321 | (mpois (parse ($outofpois expr)))
|
---|
1322 | (otherwise
|
---|
1323 | (coerce-coeff *maxima-ring* expr vars)))))))
|
---|
1324 |
|
---|
1325 | (defun parse-poly-list (expr vars)
|
---|
1326 | (case (caar expr)
|
---|
1327 | (mlist (mapcar #'(lambda (p) (parse-poly p vars)) (cdr expr)))
|
---|
1328 | (t (merror "Expression ~M is not a list of polynomials in variables ~M."
|
---|
1329 | expr vars))))
|
---|
1330 | (defun parse-poly-list-list (poly-list-list vars)
|
---|
1331 | (mapcar #'(lambda (g) (parse-poly-list g vars)) (coerce-maxima-list poly-list-list)))
|
---|
1332 |
|
---|
1333 | |
---|
1334 |
|
---|
1335 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1336 | ;;
|
---|
1337 | ;; Order utilities
|
---|
1338 | ;;
|
---|
1339 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1340 | (defun find-order (order)
|
---|
1341 | "This function returns the order function bases on its name."
|
---|
1342 | (cond
|
---|
1343 | ((null order) nil)
|
---|
1344 | ((symbolp order)
|
---|
1345 | (case order
|
---|
1346 | ((lex :lex $lex) #'lex>)
|
---|
1347 | ((grlex :grlex $grlex) #'grlex>)
|
---|
1348 | ((grevlex :grevlex $grevlex) #'grevlex>)
|
---|
1349 | ((invlex :invlex $invlex) #'invlex>)
|
---|
1350 | ((elimination-order-1 :elimination-order-1 elimination_order_1) #'elimination-order-1)
|
---|
1351 | (otherwise
|
---|
1352 | (mtell "~%Warning: Order ~M not found. Using default.~%" order))))
|
---|
1353 | (t
|
---|
1354 | (mtell "~%Order specification ~M is not recognized. Using default.~%" order)
|
---|
1355 | nil)))
|
---|
1356 |
|
---|
1357 | (defun find-ring (ring)
|
---|
1358 | "This function returns the ring structure bases on input symbol."
|
---|
1359 | (cond
|
---|
1360 | ((null ring) nil)
|
---|
1361 | ((symbolp ring)
|
---|
1362 | (case ring
|
---|
1363 | ((expression-ring :expression-ring $expression_ring) *expression-ring*)
|
---|
1364 | ((ring-of-integers :ring-of-integers $ring_of_integers) *ring-of-integers*)
|
---|
1365 | (otherwise
|
---|
1366 | (mtell "~%Warning: Ring ~M not found. Using default.~%" ring))))
|
---|
1367 | (t
|
---|
1368 | (mtell "~%Ring specification ~M is not recognized. Using default.~%" ring)
|
---|
1369 | nil)))
|
---|
1370 |
|
---|
1371 | (defmacro with-monomial-order ((order) &body body)
|
---|
1372 | "Evaluate BODY with monomial order set to ORDER."
|
---|
1373 | `(let ((*monomial-order* (or (find-order ,order) *monomial-order*)))
|
---|
1374 | . ,body))
|
---|
1375 |
|
---|
1376 | (defmacro with-coefficient-ring ((ring) &body body)
|
---|
1377 | "Evaluate BODY with coefficient ring set to RING."
|
---|
1378 | `(let ((*maxima-ring* (or (find-ring ,ring) *maxima-ring*)))
|
---|
1379 | . ,body))
|
---|
1380 |
|
---|
1381 | (defmacro with-elimination-orders ((primary secondary elimination-order)
|
---|
1382 | &body body)
|
---|
1383 | "Evaluate BODY with primary and secondary elimination orders set to PRIMARY and SECONDARY."
|
---|
1384 | `(let ((*primary-elimination-order* (or (find-order ,primary) *primary-elimination-order*))
|
---|
1385 | (*secondary-elimination-order* (or (find-order ,secondary) *secondary-elimination-order*))
|
---|
1386 | (*elimination-order* (or (find-order ,elimination-order) *elimination-order*)))
|
---|
1387 | . ,body))
|
---|
1388 |
|
---|
1389 | |
---|
1390 |
|
---|
1391 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1392 | ;;
|
---|
1393 | ;; Conversion from internal form to Maxima general form
|
---|
1394 | ;;
|
---|
1395 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1396 |
|
---|
1397 | (defun maxima-head ()
|
---|
1398 | (if $poly_return_term_list
|
---|
1399 | '(mlist)
|
---|
1400 | '(mplus)))
|
---|
1401 |
|
---|
1402 | (defun coerce-to-maxima (poly-type object vars)
|
---|
1403 | (case poly-type
|
---|
1404 | (:polynomial
|
---|
1405 | `(,(maxima-head) ,@(mapcar #'(lambda (term) (coerce-to-maxima :term term vars)) (poly-termlist object))))
|
---|
1406 | (:poly-list
|
---|
1407 | `((mlist) ,@(mapcar #'(lambda (p) ($ratdisrep (coerce-to-maxima :polynomial p vars))) object)))
|
---|
1408 | (:term
|
---|
1409 | `((mtimes) ,($ratdisrep (term-coeff object))
|
---|
1410 | ,@(mapcar #'(lambda (var power) `((mexpt) ,var ,power))
|
---|
1411 | vars (monom-exponents (term-monom object)))))
|
---|
1412 | ;; Assumes that Lisp and Maxima logicals coincide
|
---|
1413 | (:logical object)
|
---|
1414 | (otherwise
|
---|
1415 | object)))
|
---|
1416 |
|
---|
1417 | |
---|
1418 |
|
---|
1419 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1420 | ;;
|
---|
1421 | ;; Macro facility for writing Maxima-level wrappers for
|
---|
1422 | ;; functions operating on internal representation
|
---|
1423 | ;;
|
---|
1424 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1425 |
|
---|
1426 | (defmacro with-parsed-polynomials (((maxima-vars &optional (maxima-new-vars nil new-vars-supplied-p))
|
---|
1427 | &key (polynomials nil)
|
---|
1428 | (poly-lists nil)
|
---|
1429 | (poly-list-lists nil)
|
---|
1430 | (value-type nil))
|
---|
1431 | &body body
|
---|
1432 | &aux (vars (gensym))
|
---|
1433 | (new-vars (gensym)))
|
---|
1434 | `(let ((,vars (coerce-maxima-list ,maxima-vars))
|
---|
1435 | ,@(when new-vars-supplied-p
|
---|
1436 | (list `(,new-vars (coerce-maxima-list ,maxima-new-vars)))))
|
---|
1437 | (coerce-to-maxima
|
---|
1438 | ,value-type
|
---|
1439 | (with-coefficient-ring ($poly_coefficient_ring)
|
---|
1440 | (with-monomial-order ($poly_monomial_order)
|
---|
1441 | (with-elimination-orders ($poly_primary_elimination_order
|
---|
1442 | $poly_secondary_elimination_order
|
---|
1443 | $poly_elimination_order)
|
---|
1444 | (let ,(let ((args nil))
|
---|
1445 | (dolist (p polynomials args)
|
---|
1446 | (setf args (cons `(,p (parse-poly ,p ,vars)) args)))
|
---|
1447 | (dolist (p poly-lists args)
|
---|
1448 | (setf args (cons `(,p (parse-poly-list ,p ,vars)) args)))
|
---|
1449 | (dolist (p poly-list-lists args)
|
---|
1450 | (setf args (cons `(,p (parse-poly-list-list ,p ,vars)) args))))
|
---|
1451 | . ,body))))
|
---|
1452 | ,(if new-vars-supplied-p
|
---|
1453 | `(append ,vars ,new-vars)
|
---|
1454 | vars))))
|
---|
1455 |
|
---|
1456 | (defmacro define-unop (maxima-name fun-name
|
---|
1457 | &optional (documentation nil documentation-supplied-p))
|
---|
1458 | "Define a MAXIMA-level unary operator MAXIMA-NAME corresponding to unary function FUN-NAME."
|
---|
1459 | `(defun ,maxima-name (p vars
|
---|
1460 | &aux
|
---|
1461 | (vars (coerce-maxima-list vars))
|
---|
1462 | (p (parse-poly p vars)))
|
---|
1463 | ,@(when documentation-supplied-p (list documentation))
|
---|
1464 | (coerce-to-maxima :polynomial (,fun-name *maxima-ring* p) vars)))
|
---|
1465 |
|
---|
1466 | (defmacro define-binop (maxima-name fun-name
|
---|
1467 | &optional (documentation nil documentation-supplied-p))
|
---|
1468 | "Define a MAXIMA-level binary operator MAXIMA-NAME corresponding to binary function FUN-NAME."
|
---|
1469 | `(defmfun ,maxima-name (p q vars
|
---|
1470 | &aux
|
---|
1471 | (vars (coerce-maxima-list vars))
|
---|
1472 | (p (parse-poly p vars))
|
---|
1473 | (q (parse-poly q vars)))
|
---|
1474 | ,@(when documentation-supplied-p (list documentation))
|
---|
1475 | (coerce-to-maxima :polynomial (,fun-name *maxima-ring* p q) vars)))
|
---|
1476 |
|
---|
1477 | |
---|
1478 |
|
---|
1479 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1480 | ;;
|
---|
1481 | ;; Maxima-level interface functions
|
---|
1482 | ;;
|
---|
1483 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1484 |
|
---|
1485 | ;; Auxillary function for removing zero polynomial
|
---|
1486 | (defun remzero (plist) (remove #'poly-zerop plist))
|
---|
1487 |
|
---|
1488 | ;;Simple operators
|
---|
1489 |
|
---|
1490 | (define-binop $poly_add poly-add
|
---|
1491 | "Adds two polynomials P and Q")
|
---|
1492 |
|
---|
1493 | (define-binop $poly_subtract poly-sub
|
---|
1494 | "Subtracts a polynomial Q from P.")
|
---|
1495 |
|
---|
1496 | (define-binop $poly_multiply poly-mul
|
---|
1497 | "Returns the product of polynomials P and Q.")
|
---|
1498 |
|
---|
1499 | (define-binop $poly_s_polynomial spoly
|
---|
1500 | "Returns the syzygy polynomial (S-polynomial) of two polynomials P and Q.")
|
---|
1501 |
|
---|
1502 | (define-unop $poly_primitive_part poly-primitive-part
|
---|
1503 | "Returns the polynomial P divided by GCD of its coefficients.")
|
---|
1504 |
|
---|
1505 | (define-unop $poly_normalize poly-normalize
|
---|
1506 | "Returns the polynomial P divided by the leading coefficient.")
|
---|
1507 |
|
---|
1508 | ;;Functions
|
---|
1509 |
|
---|
1510 | (defmfun $poly_expand (p vars)
|
---|
1511 | "This function is equivalent to EXPAND(P) if P parses correctly to a polynomial.
|
---|
1512 | If the representation is not compatible with a polynomial in variables VARS,
|
---|
1513 | the result is an error."
|
---|
1514 | (with-parsed-polynomials ((vars) :polynomials (p)
|
---|
1515 | :value-type :polynomial)
|
---|
1516 | p))
|
---|
1517 |
|
---|
1518 | (defmfun $poly_expt (p n vars)
|
---|
1519 | (with-parsed-polynomials ((vars) :polynomials (p) :value-type :polynomial)
|
---|
1520 | (poly-expt *maxima-ring* p n)))
|
---|
1521 |
|
---|
1522 | (defmfun $poly_content (p vars)
|
---|
1523 | (with-parsed-polynomials ((vars) :polynomials (p))
|
---|
1524 | (poly-content *maxima-ring* p)))
|
---|
1525 |
|
---|
1526 | (defmfun $poly_pseudo_divide (f fl vars
|
---|
1527 | &aux (vars (coerce-maxima-list vars))
|
---|
1528 | (f (parse-poly f vars))
|
---|
1529 | (fl (parse-poly-list fl vars)))
|
---|
1530 | (multiple-value-bind (quot rem c division-count)
|
---|
1531 | (poly-pseudo-divide *maxima-ring* f fl)
|
---|
1532 | `((mlist)
|
---|
1533 | ,(coerce-to-maxima :poly-list quot vars)
|
---|
1534 | ,(coerce-to-maxima :polynomial rem vars)
|
---|
1535 | ,c
|
---|
1536 | ,division-count)))
|
---|
1537 |
|
---|
1538 | (defmfun $poly_exact_divide (f g vars)
|
---|
1539 | (with-parsed-polynomials ((vars) :polynomials (f g) :value-type :polynomial)
|
---|
1540 | (poly-exact-divide *maxima-ring* f g)))
|
---|
1541 |
|
---|
1542 | (defmfun $poly_normal_form (f fl vars)
|
---|
1543 | (with-parsed-polynomials ((vars) :polynomials (f)
|
---|
1544 | :poly-lists (fl)
|
---|
1545 | :value-type :polynomial)
|
---|
1546 | (normal-form *maxima-ring* f (remzero fl) nil)))
|
---|
1547 |
|
---|
1548 | (defmfun $poly_buchberger_criterion (g vars)
|
---|
1549 | (with-parsed-polynomials ((vars) :poly-lists (g) :value-type :logical)
|
---|
1550 | (buchberger-criterion *maxima-ring* g)))
|
---|
1551 |
|
---|
1552 | (defmfun $poly_buchberger (fl vars)
|
---|
1553 | (with-parsed-polynomials ((vars) :poly-lists (fl) :value-type :poly-list)
|
---|
1554 | (buchberger *maxima-ring* (remzero fl) 0 nil)))
|
---|
1555 |
|
---|
1556 | (defmfun $poly_reduction (plist vars)
|
---|
1557 | (with-parsed-polynomials ((vars) :poly-lists (plist)
|
---|
1558 | :value-type :poly-list)
|
---|
1559 | (reduction *maxima-ring* plist)))
|
---|
1560 |
|
---|
1561 | (defmfun $poly_minimization (plist vars)
|
---|
1562 | (with-parsed-polynomials ((vars) :poly-lists (plist)
|
---|
1563 | :value-type :poly-list)
|
---|
1564 | (minimization plist)))
|
---|
1565 |
|
---|
1566 | (defmfun $poly_normalize_list (plist vars)
|
---|
1567 | (with-parsed-polynomials ((vars) :poly-lists (plist)
|
---|
1568 | :value-type :poly-list)
|
---|
1569 | (poly-normalize-list *maxima-ring* plist)))
|
---|
1570 |
|
---|
1571 | (defmfun $poly_grobner (f vars)
|
---|
1572 | (with-parsed-polynomials ((vars) :poly-lists (f)
|
---|
1573 | :value-type :poly-list)
|
---|
1574 | (grobner *maxima-ring* (remzero f))))
|
---|
1575 |
|
---|
1576 | (defmfun $poly_reduced_grobner (f vars)
|
---|
1577 | (with-parsed-polynomials ((vars) :poly-lists (f)
|
---|
1578 | :value-type :poly-list)
|
---|
1579 | (reduced-grobner *maxima-ring* (remzero f))))
|
---|
1580 |
|
---|
1581 | (defmfun $poly_depends_p (p var mvars
|
---|
1582 | &aux (vars (coerce-maxima-list mvars))
|
---|
1583 | (pos (position var vars)))
|
---|
1584 | (if (null pos)
|
---|
1585 | (merror "~%Variable ~M not in the list of variables ~M." var mvars)
|
---|
1586 | (poly-depends-p (parse-poly p vars) pos)))
|
---|
1587 |
|
---|
1588 | (defmfun $poly_elimination_ideal (flist k vars)
|
---|
1589 | (with-parsed-polynomials ((vars) :poly-lists (flist)
|
---|
1590 | :value-type :poly-list)
|
---|
1591 | (elimination-ideal *maxima-ring* flist k nil 0)))
|
---|
1592 |
|
---|
1593 | (defmfun $poly_colon_ideal (f g vars)
|
---|
1594 | (with-parsed-polynomials ((vars) :poly-lists (f g) :value-type :poly-list)
|
---|
1595 | (colon-ideal *maxima-ring* f g nil)))
|
---|
1596 |
|
---|
1597 | (defmfun $poly_ideal_intersection (f g vars)
|
---|
1598 | (with-parsed-polynomials ((vars) :poly-lists (f g) :value-type :poly-list)
|
---|
1599 | (ideal-intersection *maxima-ring* f g nil)))
|
---|
1600 |
|
---|
1601 | (defmfun $poly_lcm (f g vars)
|
---|
1602 | (with-parsed-polynomials ((vars) :polynomials (f g) :value-type :polynomial)
|
---|
1603 | (poly-lcm *maxima-ring* f g)))
|
---|
1604 |
|
---|
1605 | (defmfun $poly_gcd (f g vars)
|
---|
1606 | ($first ($divide (m* f g) ($poly_lcm f g vars))))
|
---|
1607 |
|
---|
1608 | (defmfun $poly_grobner_equal (g1 g2 vars)
|
---|
1609 | (with-parsed-polynomials ((vars) :poly-lists (g1 g2))
|
---|
1610 | (grobner-equal *maxima-ring* g1 g2)))
|
---|
1611 |
|
---|
1612 | (defmfun $poly_grobner_subsetp (g1 g2 vars)
|
---|
1613 | (with-parsed-polynomials ((vars) :poly-lists (g1 g2))
|
---|
1614 | (grobner-subsetp *maxima-ring* g1 g2)))
|
---|
1615 |
|
---|
1616 | (defmfun $poly_grobner_member (p g vars)
|
---|
1617 | (with-parsed-polynomials ((vars) :polynomials (p) :poly-lists (g))
|
---|
1618 | (grobner-member *maxima-ring* p g)))
|
---|
1619 |
|
---|
1620 | (defmfun $poly_ideal_saturation1 (f p vars)
|
---|
1621 | (with-parsed-polynomials ((vars) :poly-lists (f) :polynomials (p)
|
---|
1622 | :value-type :poly-list)
|
---|
1623 | (ideal-saturation-1 *maxima-ring* f p 0)))
|
---|
1624 |
|
---|
1625 | (defmfun $poly_saturation_extension (f plist vars new-vars)
|
---|
1626 | (with-parsed-polynomials ((vars new-vars)
|
---|
1627 | :poly-lists (f plist)
|
---|
1628 | :value-type :poly-list)
|
---|
1629 | (saturation-extension *maxima-ring* f plist)))
|
---|
1630 |
|
---|
1631 | (defmfun $poly_polysaturation_extension (f plist vars new-vars)
|
---|
1632 | (with-parsed-polynomials ((vars new-vars)
|
---|
1633 | :poly-lists (f plist)
|
---|
1634 | :value-type :poly-list)
|
---|
1635 | (polysaturation-extension *maxima-ring* f plist)))
|
---|
1636 |
|
---|
1637 | (defmfun $poly_ideal_polysaturation1 (f plist vars)
|
---|
1638 | (with-parsed-polynomials ((vars) :poly-lists (f plist)
|
---|
1639 | :value-type :poly-list)
|
---|
1640 | (ideal-polysaturation-1 *maxima-ring* f plist 0 nil)))
|
---|
1641 |
|
---|
1642 | (defmfun $poly_ideal_saturation (f g vars)
|
---|
1643 | (with-parsed-polynomials ((vars) :poly-lists (f g)
|
---|
1644 | :value-type :poly-list)
|
---|
1645 | (ideal-saturation *maxima-ring* f g 0 nil)))
|
---|
1646 |
|
---|
1647 | (defmfun $poly_ideal_polysaturation (f ideal-list vars)
|
---|
1648 | (with-parsed-polynomials ((vars) :poly-lists (f)
|
---|
1649 | :poly-list-lists (ideal-list)
|
---|
1650 | :value-type :poly-list)
|
---|
1651 | (ideal-polysaturation *maxima-ring* f ideal-list 0 nil)))
|
---|
1652 |
|
---|
1653 | (defmfun $poly_lt (f vars)
|
---|
1654 | (with-parsed-polynomials ((vars) :polynomials (f) :value-type :polynomial)
|
---|
1655 | (make-poly-from-termlist (list (poly-lt f)))))
|
---|
1656 |
|
---|
1657 | (defmfun $poly_lm (f vars)
|
---|
1658 | (with-parsed-polynomials ((vars) :polynomials (f) :value-type :polynomial)
|
---|
1659 | (make-poly-from-termlist (list (make-term (poly-lm f) (funcall (ring-unit *maxima-ring*)))))))
|
---|
1660 |
|
---|