1 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*-
|
---|
2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
3 | ;;;
|
---|
4 | ;;; Copyright (C) 1999, 2002, 2009 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
5 | ;;;
|
---|
6 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
7 | ;;; it under the terms of the GNU General Public License as published by
|
---|
8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
9 | ;;; (at your option) any later version.
|
---|
10 | ;;;
|
---|
11 | ;;; This program is distributed in the hope that it will be useful,
|
---|
12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | ;;; GNU General Public License for more details.
|
---|
15 | ;;;
|
---|
16 | ;;; You should have received a copy of the GNU General Public License
|
---|
17 | ;;; along with this program; if not, write to the Free Software
|
---|
18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
19 | ;;;
|
---|
20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
21 |
|
---|
22 | (in-package :maxima)
|
---|
23 |
|
---|
24 | (macsyma-module cgb-maxima)
|
---|
25 |
|
---|
26 | (eval-when
|
---|
27 | #+gcl (load eval)
|
---|
28 | #-gcl (:load-toplevel :execute)
|
---|
29 | (format t "~&Loading maxima-grobner ~a ~a~%"
|
---|
30 | "$Revision: 1.1 $" "$Date: 2008/09/08 21:40:10 $"))
|
---|
31 |
|
---|
32 | ;;FUNCTS is loaded because it contains the definition of LCM
|
---|
33 | ($load "functs")
|
---|
34 |
|
---|
35 | ;; Macros for making lists with iterators - an exammple of GENSYM
|
---|
36 | ;; MAKELIST-1 makes a list with one iterator, while MAKELIST accepts an
|
---|
37 | ;; arbitrary number of iterators
|
---|
38 |
|
---|
39 | ;; Sample usage:
|
---|
40 | ;; Without a step:
|
---|
41 | ;; >(makelist-1 (* 2 i) i 0 10)
|
---|
42 | ;; (0 2 4 6 8 10 12 14 16 18 20)
|
---|
43 | ;; With a step of 3:
|
---|
44 | ;; >(makelist-1 (* 2 i) i 0 10 3)
|
---|
45 | ;; (0 6 12 18)
|
---|
46 |
|
---|
47 | ;; Generate sums of squares of numbers between 1 and 4:
|
---|
48 | ;; >(makelist (+ (* i i) (* j j)) (i 1 4) (j 1 i))
|
---|
49 | ;; (2 5 8 10 13 18 17 20 25 32)
|
---|
50 | ;; >(makelist (list i j '---> (+ (* i i) (* j j))) (i 1 4) (j 1 i))
|
---|
51 | ;; ((1 1 ---> 2) (2 1 ---> 5) (2 2 ---> 8) (3 1 ---> 10) (3 2 ---> 13)
|
---|
52 | ;; (3 3 ---> 18) (4 1 ---> 17) (4 2 ---> 20) (4 3 ---> 25) (4 4 ---> 32))
|
---|
53 |
|
---|
54 | ;; Evaluate expression expr with variable set to lo, lo+1,... ,hi
|
---|
55 | ;; and put the results in a list.
|
---|
56 | (defmacro makelist-1 (expr var lo hi &optional (step 1))
|
---|
57 | (let ((l (gensym)))
|
---|
58 | `(do ((,var ,lo (+ ,var ,step))
|
---|
59 | (,l nil (cons ,expr ,l)))
|
---|
60 | ((> ,var ,hi) (reverse ,l))
|
---|
61 | (declare (fixnum ,var)))))
|
---|
62 |
|
---|
63 | (defmacro makelist (expr (var lo hi &optional (step 1)) &rest more)
|
---|
64 | (if (endp more)
|
---|
65 | `(makelist-1 ,expr ,var ,lo ,hi ,step)
|
---|
66 | (let* ((l (gensym)))
|
---|
67 | `(do ((,var ,lo (+ ,var ,step))
|
---|
68 | (,l nil (nconc ,l `,(makelist ,expr ,@more))))
|
---|
69 | ((> ,var ,hi) ,l)
|
---|
70 | (declare (fixnum ,var))))))
|
---|
71 |
|
---|
72 | ;;----------------------------------------------------------------
|
---|
73 | ;; This package implements BASIC OPERATIONS ON MONOMIALS
|
---|
74 | ;;----------------------------------------------------------------
|
---|
75 | ;; DATA STRUCTURES: Monomials are represented as lists:
|
---|
76 | ;;
|
---|
77 | ;; monom: (n1 n2 ... nk) where ni are non-negative integers
|
---|
78 | ;;
|
---|
79 | ;; However, lists may be implemented as other sequence types,
|
---|
80 | ;; so the flexibility to change the representation should be
|
---|
81 | ;; maintained in the code to use general operations on sequences
|
---|
82 | ;; whenever possible. The optimization for the actual representation
|
---|
83 | ;; should be left to declarations and the compiler.
|
---|
84 | ;;----------------------------------------------------------------
|
---|
85 | ;; EXAMPLES: Suppose that variables are x and y. Then
|
---|
86 | ;;
|
---|
87 | ;; Monom x*y^2 ---> (1 2)
|
---|
88 | ;;
|
---|
89 | ;;----------------------------------------------------------------
|
---|
90 |
|
---|
91 | (deftype exponent ()
|
---|
92 | "Type of exponent in a monomial."
|
---|
93 | 'fixnum)
|
---|
94 |
|
---|
95 | (deftype monom (&optional dim)
|
---|
96 | "Type of monomial."
|
---|
97 | `(simple-array exponent (,dim)))
|
---|
98 |
|
---|
99 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
100 | ;;
|
---|
101 | ;; Construction of monomials
|
---|
102 | ;;
|
---|
103 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
104 |
|
---|
105 | (defmacro make-monom (dim &key (initial-contents nil initial-contents-supplied-p)
|
---|
106 | (initial-element 0 initial-element-supplied-p))
|
---|
107 | "Make a monomial with DIM variables. Additional argument
|
---|
108 | INITIAL-CONTENTS specifies the list of powers of the consecutive
|
---|
109 | variables. The alternative additional argument INITIAL-ELEMENT
|
---|
110 | specifies the common power for all variables."
|
---|
111 | ;;(declare (fixnum dim))
|
---|
112 | `(make-array ,dim
|
---|
113 | :element-type 'exponent
|
---|
114 | ,@(when initial-contents-supplied-p `(:initial-contents ,initial-contents))
|
---|
115 | ,@(when initial-element-supplied-p `(:initial-element ,initial-element))))
|
---|
116 |
|
---|
117 | |
---|
118 |
|
---|
119 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
120 | ;;
|
---|
121 | ;; Operations on monomials
|
---|
122 | ;;
|
---|
123 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
124 |
|
---|
125 | (defmacro monom-elt (m index)
|
---|
126 | "Return the power in the monomial M of variable number INDEX."
|
---|
127 | `(elt ,m ,index))
|
---|
128 |
|
---|
129 | (defun monom-dimension (m)
|
---|
130 | "Return the number of variables in the monomial M."
|
---|
131 | (length m))
|
---|
132 |
|
---|
133 | (defun monom-total-degree (m &optional (start 0) (end (length m)))
|
---|
134 | "Return the todal degree of a monomoal M. Optinally, a range
|
---|
135 | of variables may be specified with arguments START and END."
|
---|
136 | (declare (type monom m) (fixnum start end))
|
---|
137 | (reduce #'+ m :start start :end end))
|
---|
138 |
|
---|
139 | (defun monom-sugar (m &aux (start 0) (end (length m)))
|
---|
140 | "Return the sugar of a monomial M. Optinally, a range
|
---|
141 | of variables may be specified with arguments START and END."
|
---|
142 | (declare (type monom m) (fixnum start end))
|
---|
143 | (monom-total-degree m start end))
|
---|
144 |
|
---|
145 | (defun monom-div (m1 m2 &aux (result (copy-seq m1)))
|
---|
146 | "Divide monomial M1 by monomial M2."
|
---|
147 | (declare (type monom m1 m2 result))
|
---|
148 | (map-into result #'- m1 m2))
|
---|
149 |
|
---|
150 | (defun monom-mul (m1 m2 &aux (result (copy-seq m1)))
|
---|
151 | "Multiply monomial M1 by monomial M2."
|
---|
152 | (declare (type monom m1 m2 result))
|
---|
153 | (map-into result #'+ m1 m2))
|
---|
154 |
|
---|
155 | (defun monom-divides-p (m1 m2)
|
---|
156 | "Returns T if monomial M1 divides monomial M2, NIL otherwise."
|
---|
157 | (declare (type monom m1 m2))
|
---|
158 | (every #'<= m1 m2))
|
---|
159 |
|
---|
160 | (defun monom-divides-monom-lcm-p (m1 m2 m3)
|
---|
161 | "Returns T if monomial M1 divides MONOM-LCM(M2,M3), NIL otherwise."
|
---|
162 | (declare (type monom m1 m2 m3))
|
---|
163 | (every #'(lambda (x y z) (declare (type exponent x y z)) (<= x (max y z))) m1 m2 m3))
|
---|
164 |
|
---|
165 | (defun monom-lcm-divides-monom-lcm-p (m1 m2 m3 m4)
|
---|
166 | "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
|
---|
167 | (declare (type monom m1 m2 m3 m4))
|
---|
168 | (every #'(lambda (x y z w) (declare (type exponent x y z w)) (<= (max x y) (max z w))) m1 m2 m3 m4))
|
---|
169 |
|
---|
170 | (defun monom-lcm-equal-monom-lcm-p (m1 m2 m3 m4)
|
---|
171 | "Returns T if monomial MONOM-LCM(M1,M2) equals MONOM-LCM(M3,M4), NIL otherwise."
|
---|
172 | (declare (type monom m1 m2 m3 m4))
|
---|
173 | (every #'(lambda (x y z w) (declare (type exponent x y z w)) (= (max x y) (max z w))) m1 m2 m3 m4))
|
---|
174 |
|
---|
175 | (defun monom-divisible-by-p (m1 m2)
|
---|
176 | "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
|
---|
177 | (declare (type monom m1 m2))
|
---|
178 | (every #'>= m1 m2))
|
---|
179 |
|
---|
180 | (defun monom-rel-prime-p (m1 m2)
|
---|
181 | "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
|
---|
182 | (declare (type monom m1 m2))
|
---|
183 | (every #'(lambda (x y) (declare (type exponent x y)) (zerop (min x y))) m1 m2))
|
---|
184 |
|
---|
185 | (defun monom-equal-p (m1 m2)
|
---|
186 | "Returns T if two monomials M1 and M2 are equal."
|
---|
187 | (declare (type monom m1 m2))
|
---|
188 | (every #'= m1 m2))
|
---|
189 |
|
---|
190 | (defun monom-lcm (m1 m2 &aux (result (copy-seq m1)))
|
---|
191 | "Returns least common multiple of monomials M1 and M2."
|
---|
192 | (declare (type monom m1 m2))
|
---|
193 | (map-into result #'max m1 m2))
|
---|
194 |
|
---|
195 | (defun monom-gcd (m1 m2 &aux (result (copy-seq m1)))
|
---|
196 | "Returns greatest common divisor of monomials M1 and M2."
|
---|
197 | (declare (type monom m1 m2))
|
---|
198 | (map-into result #'min m1 m2))
|
---|
199 |
|
---|
200 | (defun monom-depends-p (m k)
|
---|
201 | "Return T if the monomial M depends on variable number K."
|
---|
202 | (declare (type monom m) (fixnum k))
|
---|
203 | (plusp (elt m k)))
|
---|
204 |
|
---|
205 | (defmacro monom-map (fun m &rest ml &aux (result `(copy-seq ,m)))
|
---|
206 | `(map-into ,result ,fun ,m ,@ml))
|
---|
207 |
|
---|
208 | (defmacro monom-append (m1 m2)
|
---|
209 | `(concatenate 'monom ,m1 ,m2))
|
---|
210 |
|
---|
211 | (defmacro monom-contract (k m)
|
---|
212 | `(subseq ,m ,k))
|
---|
213 |
|
---|
214 | (defun monom-exponents (m)
|
---|
215 | (declare (type monom m))
|
---|
216 | (coerce m 'list))
|
---|
217 |
|
---|
218 | |
---|
219 |
|
---|
220 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
221 | ;;
|
---|
222 | ;; Implementations of various admissible monomial orders
|
---|
223 | ;;
|
---|
224 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
225 |
|
---|
226 | ;; pure lexicographic
|
---|
227 | (defun lex> (p q &optional (start 0) (end (monom-dimension p)))
|
---|
228 | "Return T if P>Q with respect to lexicographic order, otherwise NIL.
|
---|
229 | The second returned value is T if P=Q, otherwise it is NIL."
|
---|
230 | (declare (type monom p q) (type fixnum start end))
|
---|
231 | (do ((i start (1+ i)))
|
---|
232 | ((>= i end) (values nil t))
|
---|
233 | (declare (type fixnum i))
|
---|
234 | (cond
|
---|
235 | ((> (monom-elt p i) (monom-elt q i))
|
---|
236 | (return-from lex> (values t nil)))
|
---|
237 | ((< (monom-elt p i) (monom-elt q i))
|
---|
238 | (return-from lex> (values nil nil))))))
|
---|
239 |
|
---|
240 | ;; total degree order , ties broken by lexicographic
|
---|
241 | (defun grlex> (p q &optional (start 0) (end (monom-dimension p)))
|
---|
242 | "Return T if P>Q with respect to graded lexicographic order, otherwise NIL.
|
---|
243 | The second returned value is T if P=Q, otherwise it is NIL."
|
---|
244 | (declare (type monom p q) (type fixnum start end))
|
---|
245 | (let ((d1 (monom-total-degree p start end))
|
---|
246 | (d2 (monom-total-degree q start end)))
|
---|
247 | (cond
|
---|
248 | ((> d1 d2) (values t nil))
|
---|
249 | ((< d1 d2) (values nil nil))
|
---|
250 | (t
|
---|
251 | (lex> p q start end)))))
|
---|
252 |
|
---|
253 |
|
---|
254 | ;; total degree, ties broken by reverse lexicographic
|
---|
255 | (defun grevlex> (p q &optional (start 0) (end (monom-dimension p)))
|
---|
256 | "Return T if P>Q with respect to graded reverse lexicographic order,
|
---|
257 | NIL otherwise. The second returned value is T if P=Q, otherwise it is NIL."
|
---|
258 | (declare (type monom p q) (type fixnum start end))
|
---|
259 | (let ((d1 (monom-total-degree p start end))
|
---|
260 | (d2 (monom-total-degree q start end)))
|
---|
261 | (cond
|
---|
262 | ((> d1 d2) (values t nil))
|
---|
263 | ((< d1 d2) (values nil nil))
|
---|
264 | (t
|
---|
265 | (revlex> p q start end)))))
|
---|
266 |
|
---|
267 |
|
---|
268 | ;; reverse lexicographic
|
---|
269 | (defun revlex> (p q &optional (start 0) (end (monom-dimension p)))
|
---|
270 | "Return T if P>Q with respect to reverse lexicographic order, NIL
|
---|
271 | otherwise. The second returned value is T if P=Q, otherwise it is
|
---|
272 | NIL. This is not and admissible monomial order because some sets do
|
---|
273 | not have a minimal element. This order is useful in constructing other
|
---|
274 | orders."
|
---|
275 | (declare (type monom p q) (type fixnum start end))
|
---|
276 | (do ((i (1- end) (1- i)))
|
---|
277 | ((< i start) (values nil t))
|
---|
278 | (declare (type fixnum i))
|
---|
279 | (cond
|
---|
280 | ((< (monom-elt p i) (monom-elt q i))
|
---|
281 | (return-from revlex> (values t nil)))
|
---|
282 | ((> (monom-elt p i) (monom-elt q i))
|
---|
283 | (return-from revlex> (values nil nil))))))
|
---|
284 |
|
---|
285 |
|
---|
286 | (defun invlex> (p q &optional (start 0) (end (monom-dimension p)))
|
---|
287 | "Return T if P>Q with respect to inverse lexicographic order, NIL otherwise
|
---|
288 | The second returned value is T if P=Q, otherwise it is NIL."
|
---|
289 | (declare (type monom p q) (type fixnum start end))
|
---|
290 | (do ((i (1- end) (1- i)))
|
---|
291 | ((< i start) (values nil t))
|
---|
292 | (declare (type fixnum i))
|
---|
293 | (cond
|
---|
294 | ((> (monom-elt p i) (monom-elt q i))
|
---|
295 | (return-from invlex> (values t nil)))
|
---|
296 | ((< (monom-elt p i) (monom-elt q i))
|
---|
297 | (return-from invlex> (values nil nil))))))
|
---|
298 |
|
---|
299 | |
---|
300 |
|
---|
301 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
302 | ;;
|
---|
303 | ;; Order making functions
|
---|
304 | ;;
|
---|
305 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
306 |
|
---|
307 | (defvar *monomial-order* #'lex>
|
---|
308 | "Default order for monomial comparisons")
|
---|
309 |
|
---|
310 | (defmacro monomial-order (x y)
|
---|
311 | `(funcall *monomial-order* ,x ,y))
|
---|
312 |
|
---|
313 | (defun reverse-monomial-order (x y)
|
---|
314 | (monomial-order y x))
|
---|
315 |
|
---|
316 | (defvar *primary-elimination-order* #'lex>)
|
---|
317 |
|
---|
318 | (defvar *secondary-elimination-order* #'lex>)
|
---|
319 |
|
---|
320 | (defvar *elimination-order* nil
|
---|
321 | "Default elimination order used in elimination-based functions.
|
---|
322 | If not NIL, it is assumed to be a proper elimination order. If NIL,
|
---|
323 | we will construct an elimination order using the values of
|
---|
324 | *PRIMARY-ELIMINATION-ORDER* and *SECONDARY-ELIMINATION-ORDER*.")
|
---|
325 |
|
---|
326 | (defun elimination-order (k)
|
---|
327 | "Return a predicate which compares monomials according to the
|
---|
328 | K-th elimination order. Two variables *PRIMARY-ELIMINATION-ORDER*
|
---|
329 | and *SECONDARY-ELIMINATION-ORDER* control the behavior on the first K
|
---|
330 | and the remaining variables, respectively."
|
---|
331 | (declare (type fixnum k))
|
---|
332 | #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
|
---|
333 | (declare (type monom p q) (type fixnum start end))
|
---|
334 | (multiple-value-bind (primary equal)
|
---|
335 | (funcall *primary-elimination-order* p q start k)
|
---|
336 | (if equal
|
---|
337 | (funcall *secondary-elimination-order* p q k end)
|
---|
338 | (values primary nil)))))
|
---|
339 |
|
---|
340 | (defun elimination-order-1 (p q &optional (start 0) (end (monom-dimension p)))
|
---|
341 | "Equivalent to the function returned by the call to (ELIMINATION-ORDER 1)."
|
---|
342 | (declare (type monom p q) (type fixnum start end))
|
---|
343 | (cond
|
---|
344 | ((> (monom-elt p start) (monom-elt q start)) (values t nil))
|
---|
345 | ((< (monom-elt p start) (monom-elt q start)) (values nil nil))
|
---|
346 | (t (funcall *secondary-elimination-order* p q (1+ start) end))))
|
---|
347 |
|
---|
348 | |
---|
349 |
|
---|
350 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
351 | ;;
|
---|
352 | ;; Priority queue stuff
|
---|
353 | ;;
|
---|
354 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
355 |
|
---|
356 | (defparameter *priority-queue-allocation-size* 16)
|
---|
357 |
|
---|
358 | (defun priority-queue-make-heap (&key (element-type 'fixnum))
|
---|
359 | (make-array *priority-queue-allocation-size* :element-type element-type :fill-pointer 1
|
---|
360 | :adjustable t))
|
---|
361 |
|
---|
362 | (defstruct (priority-queue (:constructor priority-queue-construct))
|
---|
363 | (heap (priority-queue-make-heap))
|
---|
364 | test)
|
---|
365 |
|
---|
366 | (defun make-priority-queue (&key (element-type 'fixnum)
|
---|
367 | (test #'<=)
|
---|
368 | (element-key #'identity))
|
---|
369 | (priority-queue-construct
|
---|
370 | :heap (priority-queue-make-heap :element-type element-type)
|
---|
371 | :test #'(lambda (x y) (funcall test (funcall element-key y) (funcall element-key x)))))
|
---|
372 |
|
---|
373 | (defun priority-queue-insert (pq item)
|
---|
374 | (priority-queue-heap-insert (priority-queue-heap pq) item (priority-queue-test pq)))
|
---|
375 |
|
---|
376 | (defun priority-queue-remove (pq)
|
---|
377 | (priority-queue-heap-remove (priority-queue-heap pq) (priority-queue-test pq)))
|
---|
378 |
|
---|
379 | (defun priority-queue-empty-p (pq)
|
---|
380 | (priority-queue-heap-empty-p (priority-queue-heap pq)))
|
---|
381 |
|
---|
382 | (defun priority-queue-size (pq)
|
---|
383 | (fill-pointer (priority-queue-heap pq)))
|
---|
384 |
|
---|
385 | (defun priority-queue-upheap (a k
|
---|
386 | &optional
|
---|
387 | (test #'<=)
|
---|
388 | &aux (v (aref a k)))
|
---|
389 | (declare (fixnum k))
|
---|
390 | (assert (< 0 k (fill-pointer a)))
|
---|
391 | (loop
|
---|
392 | (let ((parent (ash k -1)))
|
---|
393 | (when (zerop parent) (return))
|
---|
394 | (unless (funcall test (aref a parent) v)
|
---|
395 | (return))
|
---|
396 | (setf (aref a k) (aref a parent)
|
---|
397 | k parent)))
|
---|
398 | (setf (aref a k) v)
|
---|
399 | a)
|
---|
400 |
|
---|
401 |
|
---|
402 | (defun priority-queue-heap-insert (a item &optional (test #'<=))
|
---|
403 | (vector-push-extend item a)
|
---|
404 | (priority-queue-upheap a (1- (fill-pointer a)) test))
|
---|
405 |
|
---|
406 | (defun priority-queue-downheap (a k
|
---|
407 | &optional
|
---|
408 | (test #'<=)
|
---|
409 | &aux (v (aref a k)) (j 0) (n (fill-pointer a)))
|
---|
410 | (declare (fixnum k n j))
|
---|
411 | (loop
|
---|
412 | (unless (<= k (ash n -1))
|
---|
413 | (return))
|
---|
414 | (setf j (ash k 1))
|
---|
415 | (if (and (< j n) (not (funcall test (aref a (1+ j)) (aref a j))))
|
---|
416 | (incf j))
|
---|
417 | (when (funcall test (aref a j) v)
|
---|
418 | (return))
|
---|
419 | (setf (aref a k) (aref a j)
|
---|
420 | k j))
|
---|
421 | (setf (aref a k) v)
|
---|
422 | a)
|
---|
423 |
|
---|
424 | (defun priority-queue-heap-remove (a &optional (test #'<=) &aux (v (aref a 1)))
|
---|
425 | (when (<= (fill-pointer a) 1) (error "Empty queue."))
|
---|
426 | (setf (aref a 1) (vector-pop a))
|
---|
427 | (priority-queue-downheap a 1 test)
|
---|
428 | (values v a))
|
---|
429 |
|
---|
430 | (defun priority-queue-heap-empty-p (a)
|
---|
431 | (<= (fill-pointer a) 1))
|
---|
432 |
|
---|
433 | |
---|
434 |
|
---|
435 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
436 | ;;
|
---|
437 | ;; Global switches
|
---|
438 | ;; (Can be used in Maxima just fine)
|
---|
439 | ;;
|
---|
440 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
441 |
|
---|
442 | (defmvar $poly_monomial_order '$lex
|
---|
443 | "This switch controls which monomial order is used in polynomial
|
---|
444 | and Grobner basis calculations. If not set, LEX will be used")
|
---|
445 |
|
---|
446 | (defmvar $poly_coefficient_ring '$expression_ring
|
---|
447 | "This switch indicates the coefficient ring of the polynomials
|
---|
448 | that will be used in grobner calculations. If not set, Maxima's
|
---|
449 | general expression ring will be used. This variable may be set
|
---|
450 | to RING_OF_INTEGERS if desired.")
|
---|
451 |
|
---|
452 | (defmvar $poly_primary_elimination_order nil
|
---|
453 | "Name of the default order for eliminated variables in elimination-based functions.
|
---|
454 | If not set, LEX will be used.")
|
---|
455 |
|
---|
456 | (defmvar $poly_secondary_elimination_order nil
|
---|
457 | "Name of the default order for kept variables in elimination-based functions.
|
---|
458 | If not set, LEX will be used.")
|
---|
459 |
|
---|
460 | (defmvar $poly_elimination_order nil
|
---|
461 | "Name of the default elimination order used in elimination calculations.
|
---|
462 | If set, it overrides the settings in variables POLY_PRIMARY_ELIMINATION_ORDER
|
---|
463 | and SECONDARY_ELIMINATION_ORDER. The user must ensure that this is a true
|
---|
464 | elimination order valid for the number of eliminated variables.")
|
---|
465 |
|
---|
466 | (defmvar $poly_return_term_list nil
|
---|
467 | "If set to T, all functions in this package will return each polynomial as a
|
---|
468 | list of terms in the current monomial order rather than a Maxima general expression.")
|
---|
469 |
|
---|
470 | (defmvar $poly_grobner_debug nil
|
---|
471 | "If set to TRUE, produce debugging and tracing output.")
|
---|
472 |
|
---|
473 | (defmvar $poly_grobner_algorithm '$buchberger
|
---|
474 | "The name of the algorithm used to find grobner bases.")
|
---|
475 |
|
---|
476 | (defmvar $poly_top_reduction_only nil
|
---|
477 | "If not FALSE, use top reduction only whenever possible.
|
---|
478 | Top reduction means that division algorithm stops after the first reduction.")
|
---|
479 |
|
---|
480 | |
---|
481 |
|
---|
482 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
483 | ;;
|
---|
484 | ;; Coefficient ring operations
|
---|
485 | ;;
|
---|
486 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
487 | ;;
|
---|
488 | ;; These are ALL operations that are performed on the coefficients by
|
---|
489 | ;; the package, and thus the coefficient ring can be changed by merely
|
---|
490 | ;; redefining these operations.
|
---|
491 | ;;
|
---|
492 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
493 |
|
---|
494 | (defstruct (ring)
|
---|
495 | (parse #'identity :type function)
|
---|
496 | (unit #'identity :type function)
|
---|
497 | (zerop #'identity :type function)
|
---|
498 | (add #'identity :type function)
|
---|
499 | (sub #'identity :type function)
|
---|
500 | (uminus #'identity :type function)
|
---|
501 | (mul #'identity :type function)
|
---|
502 | (div #'identity :type function)
|
---|
503 | (lcm #'identity :type function)
|
---|
504 | (ezgcd #'identity :type function)
|
---|
505 | (gcd #'identity :type function))
|
---|
506 |
|
---|
507 | (defparameter *ring-of-integers*
|
---|
508 | (make-ring
|
---|
509 | :parse #'identity
|
---|
510 | :unit #'(lambda () 1)
|
---|
511 | :zerop #'zerop
|
---|
512 | :add #'+
|
---|
513 | :sub #'-
|
---|
514 | :uminus #'-
|
---|
515 | :mul #'*
|
---|
516 | :div #'/
|
---|
517 | :lcm #'lcm
|
---|
518 | :ezgcd #'(lambda (x y &aux (c (gcd x y))) (values c (/ x c) (/ y c)))
|
---|
519 | :gcd #'gcd)
|
---|
520 | "The ring of integers.")
|
---|
521 |
|
---|
522 | |
---|
523 |
|
---|
524 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
525 | ;;
|
---|
526 | ;; This is how we perform operations on coefficients
|
---|
527 | ;; using Maxima functions.
|
---|
528 | ;;
|
---|
529 | ;; Functions and macros dealing with internal representation structure
|
---|
530 | ;;
|
---|
531 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
532 |
|
---|
533 | (defun make-term-variable (ring nvars pos
|
---|
534 | &optional
|
---|
535 | (power 1)
|
---|
536 | (coeff (funcall (ring-unit ring)))
|
---|
537 | &aux
|
---|
538 | (monom (make-monom nvars :initial-element 0)))
|
---|
539 | (declare (fixnum nvars pos power))
|
---|
540 | (incf (monom-elt monom pos) power)
|
---|
541 | (make-term monom coeff))
|
---|
542 |
|
---|
543 | (defstruct (term
|
---|
544 | (:constructor make-term (monom coeff))
|
---|
545 | ;;(:constructor make-term-variable)
|
---|
546 | ;;(:type list)
|
---|
547 | )
|
---|
548 | (monom (make-monom 0) :type monom)
|
---|
549 | (coeff nil))
|
---|
550 |
|
---|
551 | (defun term-sugar (term)
|
---|
552 | (monom-sugar (term-monom term)))
|
---|
553 |
|
---|
554 | (defun termlist-sugar (p &aux (sugar -1))
|
---|
555 | (declare (fixnum sugar))
|
---|
556 | (dolist (term p sugar)
|
---|
557 | (setf sugar (max sugar (term-sugar term)))))
|
---|
558 |
|
---|
559 |
|
---|
560 | |
---|
561 |
|
---|
562 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
563 | ;;
|
---|
564 | ;; Low-level polynomial arithmetic done on
|
---|
565 | ;; lists of terms
|
---|
566 | ;;
|
---|
567 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
568 |
|
---|
569 | (defmacro termlist-lt (p) `(car ,p))
|
---|
570 | (defun termlist-lm (p) (term-monom (termlist-lt p)))
|
---|
571 | (defun termlist-lc (p) (term-coeff (termlist-lt p)))
|
---|
572 |
|
---|
573 | (define-modify-macro scalar-mul (c) coeff-mul)
|
---|
574 |
|
---|
575 | (defun scalar-times-termlist (ring c p)
|
---|
576 | "Multiply scalar C by a polynomial P. This function works
|
---|
577 | even if there are divisors of 0."
|
---|
578 | (mapcan
|
---|
579 | #'(lambda (term)
|
---|
580 | (let ((c1 (funcall (ring-mul ring) c (term-coeff term))))
|
---|
581 | (unless (funcall (ring-zerop ring) c1)
|
---|
582 | (list (make-term (term-monom term) c1)))))
|
---|
583 | p))
|
---|
584 |
|
---|
585 |
|
---|
586 | (defun term-mul (ring term1 term2)
|
---|
587 | "Returns (LIST TERM) wheter TERM is the product of the terms TERM1 TERM2,
|
---|
588 | or NIL when the product is 0. This definition takes care of divisors of 0
|
---|
589 | in the coefficient ring."
|
---|
590 | (let ((c (funcall (ring-mul ring) (term-coeff term1) (term-coeff term2))))
|
---|
591 | (unless (funcall (ring-zerop ring) c)
|
---|
592 | (list (make-term (monom-mul (term-monom term1) (term-monom term2)) c)))))
|
---|
593 |
|
---|
594 | (defun term-times-termlist (ring term f)
|
---|
595 | (declare (type ring ring))
|
---|
596 | (mapcan #'(lambda (term-f) (term-mul ring term term-f)) f))
|
---|
597 |
|
---|
598 | (defun termlist-times-term (ring f term)
|
---|
599 | (mapcan #'(lambda (term-f) (term-mul ring term-f term)) f))
|
---|
600 |
|
---|
601 | (defun monom-times-term (m term)
|
---|
602 | (make-term (monom-mul m (term-monom term)) (term-coeff term)))
|
---|
603 |
|
---|
604 | (defun monom-times-termlist (m f)
|
---|
605 | (cond
|
---|
606 | ((null f) nil)
|
---|
607 | (t
|
---|
608 | (mapcar #'(lambda (x) (monom-times-term m x)) f))))
|
---|
609 |
|
---|
610 | (defun termlist-uminus (ring f)
|
---|
611 | (mapcar #'(lambda (x)
|
---|
612 | (make-term (term-monom x) (funcall (ring-uminus ring) (term-coeff x))))
|
---|
613 | f))
|
---|
614 |
|
---|
615 | (defun termlist-add (ring p q)
|
---|
616 | (declare (type list p q))
|
---|
617 | (do (r)
|
---|
618 | ((cond
|
---|
619 | ((endp p)
|
---|
620 | (setf r (revappend r q)) t)
|
---|
621 | ((endp q)
|
---|
622 | (setf r (revappend r p)) t)
|
---|
623 | (t
|
---|
624 | (multiple-value-bind
|
---|
625 | (lm-greater lm-equal)
|
---|
626 | (monomial-order (termlist-lm p) (termlist-lm q))
|
---|
627 | (cond
|
---|
628 | (lm-equal
|
---|
629 | (let ((s (funcall (ring-add ring) (termlist-lc p) (termlist-lc q))))
|
---|
630 | (unless (funcall (ring-zerop ring) s) ;check for cancellation
|
---|
631 | (setf r (cons (make-term (termlist-lm p) s) r)))
|
---|
632 | (setf p (cdr p) q (cdr q))))
|
---|
633 | (lm-greater
|
---|
634 | (setf r (cons (car p) r)
|
---|
635 | p (cdr p)))
|
---|
636 | (t (setf r (cons (car q) r)
|
---|
637 | q (cdr q)))))
|
---|
638 | nil))
|
---|
639 | r)))
|
---|
640 |
|
---|
641 | (defun termlist-sub (ring p q)
|
---|
642 | (declare (type list p q))
|
---|
643 | (do (r)
|
---|
644 | ((cond
|
---|
645 | ((endp p)
|
---|
646 | (setf r (revappend r (termlist-uminus ring q)))
|
---|
647 | t)
|
---|
648 | ((endp q)
|
---|
649 | (setf r (revappend r p))
|
---|
650 | t)
|
---|
651 | (t
|
---|
652 | (multiple-value-bind
|
---|
653 | (mgreater mequal)
|
---|
654 | (monomial-order (termlist-lm p) (termlist-lm q))
|
---|
655 | (cond
|
---|
656 | (mequal
|
---|
657 | (let ((s (funcall (ring-sub ring) (termlist-lc p) (termlist-lc q))))
|
---|
658 | (unless (funcall (ring-zerop ring) s) ;check for cancellation
|
---|
659 | (setf r (cons (make-term (termlist-lm p) s) r)))
|
---|
660 | (setf p (cdr p) q (cdr q))))
|
---|
661 | (mgreater
|
---|
662 | (setf r (cons (car p) r)
|
---|
663 | p (cdr p)))
|
---|
664 | (t (setf r (cons (make-term (termlist-lm q) (funcall (ring-uminus ring) (termlist-lc q))) r)
|
---|
665 | q (cdr q)))))
|
---|
666 | nil))
|
---|
667 | r)))
|
---|
668 |
|
---|
669 | ;; Multiplication of polynomials
|
---|
670 | ;; Non-destructive version
|
---|
671 | (defun termlist-mul (ring p q)
|
---|
672 | (cond ((or (endp p) (endp q)) nil) ;p or q is 0 (represented by NIL)
|
---|
673 | ;; If p=p0+p1 and q=q0+q1 then pq=p0q0+p0q1+p1q
|
---|
674 | ((endp (cdr p))
|
---|
675 | (term-times-termlist ring (car p) q))
|
---|
676 | ((endp (cdr q))
|
---|
677 | (termlist-times-term ring p (car q)))
|
---|
678 | (t
|
---|
679 | (let ((head (term-mul ring (termlist-lt p) (termlist-lt q)))
|
---|
680 | (tail (termlist-add ring (term-times-termlist ring (car p) (cdr q))
|
---|
681 | (termlist-mul ring (cdr p) q))))
|
---|
682 | (cond ((null head) tail)
|
---|
683 | ((null tail) head)
|
---|
684 | (t (nconc head tail)))))))
|
---|
685 |
|
---|
686 | (defun termlist-unit (ring dimension)
|
---|
687 | (declare (fixnum dimension))
|
---|
688 | (list (make-term (make-monom dimension :initial-element 0)
|
---|
689 | (funcall (ring-unit ring)))))
|
---|
690 |
|
---|
691 | (defun termlist-expt (ring poly n &aux (dim (monom-dimension (termlist-lm poly))))
|
---|
692 | (declare (type fixnum n dim))
|
---|
693 | (cond
|
---|
694 | ((minusp n) (error "termlist-expt: Negative exponent."))
|
---|
695 | ((endp poly) (if (zerop n) (termlist-unit ring dim) nil))
|
---|
696 | (t
|
---|
697 | (do ((k 1 (ash k 1))
|
---|
698 | (q poly (termlist-mul ring q q)) ;keep squaring
|
---|
699 | (p (termlist-unit ring dim) (if (not (zerop (logand k n))) (termlist-mul ring p q) p)))
|
---|
700 | ((> k n) p)
|
---|
701 | (declare (fixnum k))))))
|
---|
702 |
|
---|
703 | |
---|
704 |
|
---|
705 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
706 | ;;
|
---|
707 | ;; Additional structure operations on a list of terms
|
---|
708 | ;;
|
---|
709 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
710 |
|
---|
711 | (defun termlist-contract (p &optional (k 1))
|
---|
712 | "Eliminate first K variables from a polynomial P."
|
---|
713 | (mapcar #'(lambda (term) (make-term (monom-contract k (term-monom term))
|
---|
714 | (term-coeff term)))
|
---|
715 | p))
|
---|
716 |
|
---|
717 | (defun termlist-extend (p &optional (m (make-monom 1 :initial-element 0)))
|
---|
718 | "Extend every monomial in a polynomial P by inserting at the
|
---|
719 | beginning of every monomial the list of powers M."
|
---|
720 | (mapcar #'(lambda (term) (make-term (monom-append m (term-monom term))
|
---|
721 | (term-coeff term)))
|
---|
722 | p))
|
---|
723 |
|
---|
724 | (defun termlist-add-variables (p n)
|
---|
725 | "Add N variables to a polynomial P by inserting zero powers
|
---|
726 | at the beginning of each monomial."
|
---|
727 | (declare (fixnum n))
|
---|
728 | (mapcar #'(lambda (term)
|
---|
729 | (make-term (monom-append (make-monom n :initial-element 0)
|
---|
730 | (term-monom term))
|
---|
731 | (term-coeff term)))
|
---|
732 | p))
|
---|
733 |
|
---|
734 | |
---|
735 |
|
---|
736 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
737 | ;;
|
---|
738 | ;; Arithmetic on polynomials
|
---|
739 | ;;
|
---|
740 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
741 |
|
---|
742 | (defstruct (poly
|
---|
743 | ;;BOA constructor, by default constructs zero polynomial
|
---|
744 | (:constructor make-poly-from-termlist (termlist &optional (sugar (termlist-sugar termlist))))
|
---|
745 | (:constructor make-poly-zero (&aux (termlist nil) (sugar -1)))
|
---|
746 | ;;Constructor of polynomials representing a variable
|
---|
747 | (:constructor make-variable (ring nvars pos &optional (power 1)
|
---|
748 | &aux
|
---|
749 | (termlist (list
|
---|
750 | (make-term-variable ring nvars pos power)))
|
---|
751 | (sugar power)))
|
---|
752 | (:constructor poly-unit (ring dimension
|
---|
753 | &aux
|
---|
754 | (termlist (termlist-unit ring dimension))
|
---|
755 | (sugar 0))))
|
---|
756 | (termlist nil :type list)
|
---|
757 | (sugar -1 :type fixnum))
|
---|
758 |
|
---|
759 | ;; Leading term
|
---|
760 | (defmacro poly-lt (p) `(car (poly-termlist ,p)))
|
---|
761 |
|
---|
762 | ;; Second term
|
---|
763 | (defmacro poly-second-lt (p) `(cadar (poly-termlist ,p)))
|
---|
764 |
|
---|
765 | ;; Leading monomial
|
---|
766 | (defun poly-lm (p) (term-monom (poly-lt p)))
|
---|
767 |
|
---|
768 | ;; Second monomial
|
---|
769 | (defun poly-second-lm (p) (term-monom (poly-second-lt p)))
|
---|
770 |
|
---|
771 | ;; Leading coefficient
|
---|
772 | (defun poly-lc (p) (term-coeff (poly-lt p)))
|
---|
773 |
|
---|
774 | ;; Second coefficient
|
---|
775 | (defun poly-second-lc (p) (term-coeff (poly-second-lt p)))
|
---|
776 |
|
---|
777 | ;; Testing for a zero polynomial
|
---|
778 | (defun poly-zerop (p) (null (poly-termlist p)))
|
---|
779 |
|
---|
780 | ;; The number of terms
|
---|
781 | (defun poly-length (p) (length (poly-termlist p)))
|
---|
782 |
|
---|
783 | (defun scalar-times-poly (ring c p)
|
---|
784 | (make-poly-from-termlist (scalar-times-termlist ring c (poly-termlist p)) (poly-sugar p)))
|
---|
785 |
|
---|
786 | (defun monom-times-poly (m p)
|
---|
787 | (make-poly-from-termlist (monom-times-termlist m (poly-termlist p)) (+ (poly-sugar p) (monom-sugar m))))
|
---|
788 |
|
---|
789 | (defun term-times-poly (ring term p)
|
---|
790 | (make-poly-from-termlist (term-times-termlist ring term (poly-termlist p)) (+ (poly-sugar p) (term-sugar term))))
|
---|
791 |
|
---|
792 | (defun poly-add (ring p q)
|
---|
793 | (make-poly-from-termlist (termlist-add ring (poly-termlist p) (poly-termlist q)) (max (poly-sugar p) (poly-sugar q))))
|
---|
794 |
|
---|
795 | (defun poly-sub (ring p q)
|
---|
796 | (make-poly-from-termlist (termlist-sub ring (poly-termlist p) (poly-termlist q)) (max (poly-sugar p) (poly-sugar q))))
|
---|
797 |
|
---|
798 | (defun poly-uminus (ring p)
|
---|
799 | (make-poly-from-termlist (termlist-uminus ring (poly-termlist p)) (poly-sugar p)))
|
---|
800 |
|
---|
801 | (defun poly-mul (ring p q)
|
---|
802 | (make-poly-from-termlist (termlist-mul ring (poly-termlist p) (poly-termlist q)) (+ (poly-sugar p) (poly-sugar q))))
|
---|
803 |
|
---|
804 | (defun poly-expt (ring p n)
|
---|
805 | (make-poly-from-termlist (termlist-expt ring (poly-termlist p) n) (* n (poly-sugar p))))
|
---|
806 |
|
---|
807 | (defun poly-append (&rest plist)
|
---|
808 | (make-poly-from-termlist (apply #'append (mapcar #'poly-termlist plist))
|
---|
809 | (apply #'max (mapcar #'poly-sugar plist))))
|
---|
810 |
|
---|
811 | (defun poly-nreverse (p)
|
---|
812 | (setf (poly-termlist p) (nreverse (poly-termlist p)))
|
---|
813 | p)
|
---|
814 |
|
---|
815 | (defun poly-contract (p &optional (k 1))
|
---|
816 | (make-poly-from-termlist (termlist-contract (poly-termlist p) k)
|
---|
817 | (poly-sugar p)))
|
---|
818 |
|
---|
819 | (defun poly-extend (p &optional (m (make-monom 1 :initial-element 0)))
|
---|
820 | (make-poly-from-termlist
|
---|
821 | (termlist-extend (poly-termlist p) m)
|
---|
822 | (+ (poly-sugar p) (monom-sugar m))))
|
---|
823 |
|
---|
824 | (defun poly-add-variables (p k)
|
---|
825 | (setf (poly-termlist p) (termlist-add-variables (poly-termlist p) k))
|
---|
826 | p)
|
---|
827 |
|
---|
828 | (defun poly-list-add-variables (plist k)
|
---|
829 | (mapcar #'(lambda (p) (poly-add-variables p k)) plist))
|
---|
830 |
|
---|
831 | (defun poly-standard-extension (plist &aux (k (length plist)))
|
---|
832 | "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]."
|
---|
833 | (declare (list plist) (fixnum k))
|
---|
834 | (labels ((incf-power (g i)
|
---|
835 | (dolist (x (poly-termlist g))
|
---|
836 | (incf (monom-elt (term-monom x) i)))
|
---|
837 | (incf (poly-sugar g))))
|
---|
838 | (setf plist (poly-list-add-variables plist k))
|
---|
839 | (dotimes (i k plist)
|
---|
840 | (incf-power (nth i plist) i))))
|
---|
841 |
|
---|
842 | (defun saturation-extension (ring f plist &aux (k (length plist)) (d (monom-dimension (poly-lm (car plist)))))
|
---|
843 | "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
|
---|
844 | (setf f (poly-list-add-variables f k)
|
---|
845 | plist (mapcar #'(lambda (x)
|
---|
846 | (setf (poly-termlist x) (nconc (poly-termlist x)
|
---|
847 | (list (make-term (make-monom d :initial-element 0)
|
---|
848 | (funcall (ring-uminus ring) (funcall (ring-unit ring)))))))
|
---|
849 | x)
|
---|
850 | (poly-standard-extension plist)))
|
---|
851 | (append f plist))
|
---|
852 |
|
---|
853 |
|
---|
854 | (defun polysaturation-extension (ring f plist &aux (k (length plist))
|
---|
855 | (d (+ k (length (poly-lm (car plist))))))
|
---|
856 | "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]."
|
---|
857 | (setf f (poly-list-add-variables f k)
|
---|
858 | plist (apply #'poly-append (poly-standard-extension plist))
|
---|
859 | (cdr (last (poly-termlist plist))) (list (make-term (make-monom d :initial-element 0)
|
---|
860 | (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
|
---|
861 | (append f (list plist)))
|
---|
862 |
|
---|
863 | (defun saturation-extension-1 (ring f p) (polysaturation-extension ring f (list p)))
|
---|
864 |
|
---|
865 |
|
---|
866 | |
---|
867 |
|
---|
868 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
869 | ;;
|
---|
870 | ;; Evaluation of polynomial (prefix) expressions
|
---|
871 | ;;
|
---|
872 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
873 |
|
---|
874 | (defun coerce-coeff (ring expr vars)
|
---|
875 | "Coerce an element of the coefficient ring to a constant polynomial."
|
---|
876 | ;; Modular arithmetic handler by rat
|
---|
877 | (make-poly-from-termlist (list (make-term (make-monom (length vars) :initial-element 0)
|
---|
878 | (funcall (ring-parse ring) expr)))
|
---|
879 | 0))
|
---|
880 |
|
---|
881 | (defun poly-eval (ring expr vars &optional (list-marker '[))
|
---|
882 | (labels ((p-eval (arg) (poly-eval ring arg vars))
|
---|
883 | (p-eval-list (args) (mapcar #'p-eval args))
|
---|
884 | (p-add (x y) (poly-add ring x y)))
|
---|
885 | (cond
|
---|
886 | ((eql expr 0) (make-poly-zero))
|
---|
887 | ((member expr vars :test #'equalp)
|
---|
888 | (let ((pos (position expr vars :test #'equalp)))
|
---|
889 | (make-variable ring (length vars) pos)))
|
---|
890 | ((atom expr)
|
---|
891 | (coerce-coeff ring expr vars))
|
---|
892 | ((eq (car expr) list-marker)
|
---|
893 | (cons list-marker (p-eval-list (cdr expr))))
|
---|
894 | (t
|
---|
895 | (case (car expr)
|
---|
896 | (+ (reduce #'p-add (p-eval-list (cdr expr))))
|
---|
897 | (- (case (length expr)
|
---|
898 | (1 (make-poly-zero))
|
---|
899 | (2 (poly-uminus ring (p-eval (cadr expr))))
|
---|
900 | (3 (poly-sub ring (p-eval (cadr expr)) (p-eval (caddr expr))))
|
---|
901 | (otherwise (poly-sub ring (p-eval (cadr expr))
|
---|
902 | (reduce #'p-add (p-eval-list (cddr expr)))))))
|
---|
903 | (*
|
---|
904 | (if (endp (cddr expr)) ;unary
|
---|
905 | (p-eval (cdr expr))
|
---|
906 | (reduce #'(lambda (p q) (poly-mul ring p q)) (p-eval-list (cdr expr)))))
|
---|
907 | (expt
|
---|
908 | (cond
|
---|
909 | ((member (cadr expr) vars :test #'equalp)
|
---|
910 | ;;Special handling of (expt var pow)
|
---|
911 | (let ((pos (position (cadr expr) vars :test #'equalp)))
|
---|
912 | (make-variable ring (length vars) pos (caddr expr))))
|
---|
913 | ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
|
---|
914 | ;; Negative power means division in coefficient ring
|
---|
915 | ;; Non-integer power means non-polynomial coefficient
|
---|
916 | (coerce-coeff ring expr vars))
|
---|
917 | (t (poly-expt ring (p-eval (cadr expr)) (caddr expr)))))
|
---|
918 | (otherwise
|
---|
919 | (coerce-coeff ring expr vars)))))))
|
---|
920 |
|
---|
921 | |
---|
922 |
|
---|
923 |
|
---|
924 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
925 | ;;
|
---|
926 | ;; Debugging/tracing
|
---|
927 | ;;
|
---|
928 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
929 |
|
---|
930 |
|
---|
931 |
|
---|
932 | (defmacro debug-cgb (&rest args)
|
---|
933 | `(when $poly_grobner_debug (format *terminal-io* ,@args)))
|
---|
934 |
|
---|
935 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
936 | ;;
|
---|
937 | ;; An implementation of Grobner basis
|
---|
938 | ;;
|
---|
939 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
940 |
|
---|
941 | (defun spoly (ring f g)
|
---|
942 | "It yields the S-polynomial of polynomials F and G."
|
---|
943 | (declare (type poly f g))
|
---|
944 | (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
|
---|
945 | (mf (monom-div lcm (poly-lm f)))
|
---|
946 | (mg (monom-div lcm (poly-lm g))))
|
---|
947 | (declare (type monom mf mg))
|
---|
948 | (multiple-value-bind (c cf cg)
|
---|
949 | (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
|
---|
950 | (declare (ignore c))
|
---|
951 | (poly-sub
|
---|
952 | ring
|
---|
953 | (scalar-times-poly ring cg (monom-times-poly mf f))
|
---|
954 | (scalar-times-poly ring cf (monom-times-poly mg g))))))
|
---|
955 |
|
---|
956 |
|
---|
957 | (defun poly-primitive-part (ring p)
|
---|
958 | "Divide polynomial P with integer coefficients by gcd of its
|
---|
959 | coefficients and return the result."
|
---|
960 | (declare (type poly p))
|
---|
961 | (if (poly-zerop p)
|
---|
962 | (values p 1)
|
---|
963 | (let ((c (poly-content ring p)))
|
---|
964 | (values (make-poly-from-termlist (mapcar
|
---|
965 | #'(lambda (x)
|
---|
966 | (make-term (term-monom x)
|
---|
967 | (funcall (ring-div ring) (term-coeff x) c)))
|
---|
968 | (poly-termlist p))
|
---|
969 | (poly-sugar p))
|
---|
970 | c))))
|
---|
971 |
|
---|
972 | (defun poly-content (ring p)
|
---|
973 | "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
|
---|
974 | to compute the greatest common divisor."
|
---|
975 | (declare (type poly p))
|
---|
976 | (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
|
---|
977 |
|
---|
978 | |
---|
979 |
|
---|
980 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
981 | ;;
|
---|
982 | ;; An implementation of the division algorithm
|
---|
983 | ;;
|
---|
984 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
985 |
|
---|
986 | (defun grobner-op (ring c1 c2 m f g)
|
---|
987 | "Returns C2*F-C1*M*G, where F and G are polynomials M is a monomial.
|
---|
988 | Assume that the leading terms will cancel."
|
---|
989 | #+grobner-check(funcall (ring-zerop ring)
|
---|
990 | (funcall (ring-sub ring)
|
---|
991 | (funcall (ring-mul ring) c2 (poly-lc f))
|
---|
992 | (funcall (ring-mul ring) c1 (poly-lc g))))
|
---|
993 | #+grobner-check(monom-equal-p (poly-lm f) (monom-mul m (poly-lm g)))
|
---|
994 | (poly-sub ring
|
---|
995 | (scalar-times-poly ring c2 (cdr f))
|
---|
996 | (scalar-times-poly ring c1 (monom-times-poly m (cdr g)))))
|
---|
997 |
|
---|
998 | (defun poly-pseudo-divide (ring f fl)
|
---|
999 | "Pseudo-divide a polynomial F by the list of polynomials FL. Return
|
---|
1000 | multiple values. The first value is a list of quotients A. The second
|
---|
1001 | value is the remainder R. The third argument is a scalar coefficient
|
---|
1002 | C, such that C*F can be divided by FL within the ring of coefficients,
|
---|
1003 | which is not necessarily a field. Finally, the fourth value is an
|
---|
1004 | integer count of the number of reductions performed. The resulting
|
---|
1005 | objects satisfy the equation: C*F= sum A[i]*FL[i] + R."
|
---|
1006 | (declare (type poly f) (list fl))
|
---|
1007 | (do ((r (make-poly-zero))
|
---|
1008 | (c (funcall (ring-unit ring)))
|
---|
1009 | (a (make-list (length fl) :initial-element (make-poly-zero)))
|
---|
1010 | (division-count 0)
|
---|
1011 | (p f))
|
---|
1012 | ((poly-zerop p)
|
---|
1013 | (debug-cgb "~&~3T~d reduction~:p" division-count)
|
---|
1014 | (when (poly-zerop r) (debug-cgb " ---> 0"))
|
---|
1015 | (values (mapcar #'poly-nreverse a) (poly-nreverse r) c division-count))
|
---|
1016 | (declare (fixnum division-count))
|
---|
1017 | (do ((fl fl (rest fl)) ;scan list of divisors
|
---|
1018 | (b a (rest b)))
|
---|
1019 | ((cond
|
---|
1020 | ((endp fl) ;no division occurred
|
---|
1021 | (push (poly-lt p) (poly-termlist r)) ;move lt(p) to remainder
|
---|
1022 | (setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
|
---|
1023 | (pop (poly-termlist p)) ;remove lt(p) from p
|
---|
1024 | t)
|
---|
1025 | ((monom-divides-p (poly-lm (car fl)) (poly-lm p)) ;division occurred
|
---|
1026 | (incf division-count)
|
---|
1027 | (multiple-value-bind (gcd c1 c2)
|
---|
1028 | (funcall (ring-ezgcd ring) (poly-lc (car fl)) (poly-lc p))
|
---|
1029 | (declare (ignore gcd))
|
---|
1030 | (let ((m (monom-div (poly-lm p) (poly-lm (car fl)))))
|
---|
1031 | ;; Multiply the equation c*f=sum ai*fi+r+p by c1.
|
---|
1032 | (mapl #'(lambda (x)
|
---|
1033 | (setf (car x) (scalar-times-poly ring c1 (car x))))
|
---|
1034 | a)
|
---|
1035 | (setf r (scalar-times-poly ring c1 r)
|
---|
1036 | c (funcall (ring-mul ring) c c1)
|
---|
1037 | p (grobner-op ring c2 c1 m p (car fl)))
|
---|
1038 | (push (make-term m c2) (poly-termlist (car b))))
|
---|
1039 | t)))))))
|
---|
1040 |
|
---|
1041 | (defun poly-exact-divide (ring f g)
|
---|
1042 | "Divide a polynomial F by another polynomial G. Assume that exact division
|
---|
1043 | with no remainder is possible. Returns the quotient."
|
---|
1044 | (declare (type poly f g))
|
---|
1045 | (multiple-value-bind (quot rem coeff division-count)
|
---|
1046 | (poly-pseudo-divide ring f (list g))
|
---|
1047 | (declare (ignore division-count coeff)
|
---|
1048 | (list quot)
|
---|
1049 | (type poly rem)
|
---|
1050 | (type fixnum division-count))
|
---|
1051 | (unless (poly-zerop rem) (error "Exact division failed."))
|
---|
1052 | (car quot)))
|
---|
1053 |
|
---|
1054 | |
---|
1055 |
|
---|
1056 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1057 | ;;
|
---|
1058 | ;; An implementation of the normal form
|
---|
1059 | ;;
|
---|
1060 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1061 |
|
---|
1062 | (defun normal-form-step (ring fl p r c division-count
|
---|
1063 | &aux (g (find (poly-lm p) fl
|
---|
1064 | :test #'monom-divisible-by-p
|
---|
1065 | :key #'poly-lm)))
|
---|
1066 | (cond
|
---|
1067 | (g ;division possible
|
---|
1068 | (incf division-count)
|
---|
1069 | (multiple-value-bind (gcd cg cp)
|
---|
1070 | (funcall (ring-ezgcd ring) (poly-lc g) (poly-lc p))
|
---|
1071 | (declare (ignore gcd))
|
---|
1072 | (let ((m (monom-div (poly-lm p) (poly-lm g))))
|
---|
1073 | ;; Multiply the equation c*f=sum ai*fi+r+p by cg.
|
---|
1074 | (setf r (scalar-times-poly ring cg r)
|
---|
1075 | c (funcall (ring-mul ring) c cg)
|
---|
1076 | ;; p := cg*p-cp*m*g
|
---|
1077 | p (grobner-op ring cp cg m p g))))
|
---|
1078 | (debug-cgb "/"))
|
---|
1079 | (t ;no division possible
|
---|
1080 | (push (poly-lt p) (poly-termlist r)) ;move lt(p) to remainder
|
---|
1081 | (setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
|
---|
1082 | (pop (poly-termlist p)) ;remove lt(p) from p
|
---|
1083 | (debug-cgb "+")))
|
---|
1084 | (values p r c division-count))
|
---|
1085 |
|
---|
1086 | ;; Merge it sometime with poly-pseudo-divide
|
---|
1087 | (defun normal-form (ring f fl &optional (top-reduction-only $poly_top_reduction_only))
|
---|
1088 | ;; Loop invariant: c*f0=sum ai*fi+r+f, where f0 is the initial value of f
|
---|
1089 | #+grobner-check(when (null fl) (warn "normal-form: empty divisor list."))
|
---|
1090 | (do ((r (make-poly-zero))
|
---|
1091 | (c (funcall (ring-unit ring)))
|
---|
1092 | (division-count 0))
|
---|
1093 | ((or (poly-zerop f)
|
---|
1094 | ;;(endp fl)
|
---|
1095 | (and top-reduction-only (not (poly-zerop r))))
|
---|
1096 | (progn
|
---|
1097 | (debug-cgb "~&~3T~d reduction~:p" division-count)
|
---|
1098 | (when (poly-zerop r)
|
---|
1099 | (debug-cgb " ---> 0")))
|
---|
1100 | (setf (poly-termlist f) (nreconc (poly-termlist r) (poly-termlist f)))
|
---|
1101 | (values f c division-count))
|
---|
1102 | (declare (fixnum division-count)
|
---|
1103 | (type poly r))
|
---|
1104 | (multiple-value-setq (f r c division-count)
|
---|
1105 | (normal-form-step ring fl f r c division-count))))
|
---|
1106 |
|
---|
1107 | |
---|
1108 |
|
---|
1109 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1110 | ;;
|
---|
1111 | ;; These are provided mostly for debugging purposes To enable
|
---|
1112 | ;; verification of grobner bases with BUCHBERGER-CRITERION, do
|
---|
1113 | ;; (pushnew :grobner-check *features*) and compile/load this file.
|
---|
1114 | ;; With this feature, the calculations will slow down CONSIDERABLY.
|
---|
1115 | ;;
|
---|
1116 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1117 |
|
---|
1118 | (defun buchberger-criterion (ring g)
|
---|
1119 | "Returns T if G is a Grobner basis, by using the Buchberger
|
---|
1120 | criterion: for every two polynomials h1 and h2 in G the S-polynomial
|
---|
1121 | S(h1,h2) reduces to 0 modulo G."
|
---|
1122 | (every
|
---|
1123 | #'poly-zerop
|
---|
1124 | (makelist (normal-form ring (spoly ring (elt g i) (elt g j)) g nil)
|
---|
1125 | (i 0 (- (length g) 2))
|
---|
1126 | (j (1+ i) (1- (length g))))))
|
---|
1127 |
|
---|
1128 | (defun grobner-test (ring g f)
|
---|
1129 | "Test whether G is a Grobner basis and F is contained in G. Return T
|
---|
1130 | upon success and NIL otherwise."
|
---|
1131 | (debug-cgb "~&GROBNER CHECK: ")
|
---|
1132 | (let (($poly_grobner_debug nil)
|
---|
1133 | (stat1 (buchberger-criterion ring g))
|
---|
1134 | (stat2
|
---|
1135 | (every #'poly-zerop
|
---|
1136 | (makelist (normal-form ring (copy-tree (elt f i)) g nil)
|
---|
1137 | (i 0 (1- (length f)))))))
|
---|
1138 | (unless stat1 (error "~&Buchberger criterion failed."))
|
---|
1139 | (unless stat2
|
---|
1140 | (error "~&Original polys not in ideal spanned by Grobner.")))
|
---|
1141 | (debug-cgb "~&GROBNER CHECK END")
|
---|
1142 | t)
|
---|
1143 |
|
---|
1144 | |
---|
1145 |
|
---|
1146 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1147 | ;;
|
---|
1148 | ;; Pair queue implementation
|
---|
1149 | ;;
|
---|
1150 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1151 |
|
---|
1152 | (defun sugar-pair-key (p q &aux (lcm (monom-lcm (poly-lm p) (poly-lm q)))
|
---|
1153 | (d (monom-sugar lcm)))
|
---|
1154 | "Returns list (S LCM-TOTAL-DEGREE) where S is the sugar of the S-polynomial of
|
---|
1155 | polynomials P and Q, and LCM-TOTAL-DEGREE is the degree of is LCM(LM(P),LM(Q))."
|
---|
1156 | (declare (type poly p q) (type monom lcm) (type fixnum d))
|
---|
1157 | (cons (max
|
---|
1158 | (+ (- d (monom-sugar (poly-lm p))) (poly-sugar p))
|
---|
1159 | (+ (- d (monom-sugar (poly-lm q))) (poly-sugar q)))
|
---|
1160 | lcm))
|
---|
1161 |
|
---|
1162 | (defstruct (pair
|
---|
1163 | (:constructor make-pair (first second
|
---|
1164 | &aux
|
---|
1165 | (sugar (car (sugar-pair-key first second)))
|
---|
1166 | (division-data nil))))
|
---|
1167 | (first nil :type poly)
|
---|
1168 | (second nil :type poly)
|
---|
1169 | (sugar 0 :type fixnum)
|
---|
1170 | (division-data nil :type list))
|
---|
1171 |
|
---|
1172 | ;;(defun pair-sugar (pair &aux (p (pair-first pair)) (q (pair-second pair)))
|
---|
1173 | ;; (car (sugar-pair-key p q)))
|
---|
1174 |
|
---|
1175 | (defun sugar-order (x y)
|
---|
1176 | "Pair order based on sugar, ties broken by normal strategy."
|
---|
1177 | (declare (type cons x y))
|
---|
1178 | (or (< (car x) (car y))
|
---|
1179 | (and (= (car x) (car y))
|
---|
1180 | (< (monom-total-degree (cdr x))
|
---|
1181 | (monom-total-degree (cdr y))))))
|
---|
1182 |
|
---|
1183 | (defvar *pair-key-function* #'sugar-pair-key
|
---|
1184 | "Function that, given two polynomials as argument, computed the key
|
---|
1185 | in the pair queue.")
|
---|
1186 |
|
---|
1187 | (defvar *pair-order* #'sugar-order
|
---|
1188 | "Function that orders the keys of pairs.")
|
---|
1189 |
|
---|
1190 | (defun make-pair-queue ()
|
---|
1191 | "Constructs a priority queue for critical pairs."
|
---|
1192 | (make-priority-queue
|
---|
1193 | :element-type 'pair
|
---|
1194 | :element-key #'(lambda (pair) (funcall *pair-key-function* (pair-first pair) (pair-second pair)))
|
---|
1195 | :test *pair-order*))
|
---|
1196 |
|
---|
1197 | (defun pair-queue-initialize (pq f start
|
---|
1198 | &aux
|
---|
1199 | (s (1- (length f)))
|
---|
1200 | (b (nconc (makelist (make-pair (elt f i) (elt f j))
|
---|
1201 | (i 0 (1- start)) (j start s))
|
---|
1202 | (makelist (make-pair (elt f i) (elt f j))
|
---|
1203 | (i start (1- s)) (j (1+ i) s)))))
|
---|
1204 | "Initializes the priority for critical pairs. F is the initial list of polynomials.
|
---|
1205 | START is the first position beyond the elements which form a partial
|
---|
1206 | grobner basis, i.e. satisfy the Buchberger criterion."
|
---|
1207 | (declare (type priority-queue pq) (type fixnum start))
|
---|
1208 | (dolist (pair b pq)
|
---|
1209 | (priority-queue-insert pq pair)))
|
---|
1210 |
|
---|
1211 | (defun pair-queue-insert (b pair)
|
---|
1212 | (priority-queue-insert b pair))
|
---|
1213 |
|
---|
1214 | (defun pair-queue-remove (b)
|
---|
1215 | (priority-queue-remove b))
|
---|
1216 |
|
---|
1217 | (defun pair-queue-size (b)
|
---|
1218 | (priority-queue-size b))
|
---|
1219 |
|
---|
1220 | (defun pair-queue-empty-p (b)
|
---|
1221 | (priority-queue-empty-p b))
|
---|
1222 |
|
---|
1223 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1224 | ;;
|
---|
1225 | ;; Buchberger Algorithm Implementation
|
---|
1226 | ;;
|
---|
1227 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1228 |
|
---|
1229 | (defun buchberger (ring f start &optional (top-reduction-only $poly_top_reduction_only))
|
---|
1230 | "An implementation of the Buchberger algorithm. Return Grobner basis
|
---|
1231 | of the ideal generated by the polynomial list F. Polynomials 0 to
|
---|
1232 | START-1 are assumed to be a Grobner basis already, so that certain
|
---|
1233 | critical pairs will not be examined. If TOP-REDUCTION-ONLY set, top
|
---|
1234 | reduction will be preformed. This function assumes that all polynomials
|
---|
1235 | in F are non-zero."
|
---|
1236 | (declare (type fixnum start))
|
---|
1237 | (when (endp f) (return-from buchberger f)) ;cut startup costs
|
---|
1238 | (debug-cgb "~&GROBNER BASIS - BUCHBERGER ALGORITHM")
|
---|
1239 | (when (plusp start) (debug-cgb "~&INCREMENTAL:~d done" start))
|
---|
1240 | #+grobner-check (when (plusp start)
|
---|
1241 | (grobner-test ring (subseq f 0 start) (subseq f 0 start)))
|
---|
1242 | ;;Initialize critical pairs
|
---|
1243 | (let ((b (pair-queue-initialize (make-pair-queue)
|
---|
1244 | f start))
|
---|
1245 | (b-done (make-hash-table :test #'equal)))
|
---|
1246 | (declare (type priority-queue b) (type hash-table b-done))
|
---|
1247 | (dotimes (i (1- start))
|
---|
1248 | (do ((j (1+ i) (1+ j))) ((>= j start))
|
---|
1249 | (setf (gethash (list (elt f i) (elt f j)) b-done) t)))
|
---|
1250 | (do ()
|
---|
1251 | ((pair-queue-empty-p b)
|
---|
1252 | #+grobner-check(grobner-test ring f f)
|
---|
1253 | (debug-cgb "~&GROBNER END")
|
---|
1254 | f)
|
---|
1255 | (let ((pair (pair-queue-remove b)))
|
---|
1256 | (declare (type pair pair))
|
---|
1257 | (cond
|
---|
1258 | ((criterion-1 pair) nil)
|
---|
1259 | ((criterion-2 pair b-done f) nil)
|
---|
1260 | (t
|
---|
1261 | (let ((sp (normal-form ring (spoly ring (pair-first pair)
|
---|
1262 | (pair-second pair))
|
---|
1263 | f top-reduction-only)))
|
---|
1264 | (declare (type poly sp))
|
---|
1265 | (cond
|
---|
1266 | ((poly-zerop sp)
|
---|
1267 | nil)
|
---|
1268 | (t
|
---|
1269 | (setf sp (poly-primitive-part ring sp)
|
---|
1270 | f (nconc f (list sp)))
|
---|
1271 | ;; Add new critical pairs
|
---|
1272 | (dolist (h f)
|
---|
1273 | (pair-queue-insert b (make-pair h sp)))
|
---|
1274 | (debug-cgb "~&Sugar: ~d Polynomials: ~d; Pairs left: ~d; Pairs done: ~d;"
|
---|
1275 | (pair-sugar pair) (length f) (pair-queue-size b)
|
---|
1276 | (hash-table-count b-done)))))))
|
---|
1277 | (setf (gethash (list (pair-first pair) (pair-second pair)) b-done)
|
---|
1278 | t)))))
|
---|
1279 |
|
---|
1280 | (defun parallel-buchberger (ring f start &optional (top-reduction-only $poly_top_reduction_only))
|
---|
1281 | "An implementation of the Buchberger algorithm. Return Grobner basis
|
---|
1282 | of the ideal generated by the polynomial list F. Polynomials 0 to
|
---|
1283 | START-1 are assumed to be a Grobner basis already, so that certain
|
---|
1284 | critical pairs will not be examined. If TOP-REDUCTION-ONLY set, top
|
---|
1285 | reduction will be preformed."
|
---|
1286 | (declare (ignore top-reduction-only)
|
---|
1287 | (type fixnum start))
|
---|
1288 | (when (endp f) (return-from parallel-buchberger f)) ;cut startup costs
|
---|
1289 | (debug-cgb "~&GROBNER BASIS - PARALLEL-BUCHBERGER ALGORITHM")
|
---|
1290 | (when (plusp start) (debug-cgb "~&INCREMENTAL:~d done" start))
|
---|
1291 | #+grobner-check (when (plusp start)
|
---|
1292 | (grobner-test ring (subseq f 0 start) (subseq f 0 start)))
|
---|
1293 | ;;Initialize critical pairs
|
---|
1294 | (let ((b (pair-queue-initialize (make-pair-queue) f start))
|
---|
1295 | (b-done (make-hash-table :test #'equal)))
|
---|
1296 | (declare (type priority-queue b)
|
---|
1297 | (type hash-table b-done))
|
---|
1298 | (dotimes (i (1- start))
|
---|
1299 | (do ((j (1+ i) (1+ j))) ((>= j start))
|
---|
1300 | (declare (type fixnum j))
|
---|
1301 | (setf (gethash (list (elt f i) (elt f j)) b-done) t)))
|
---|
1302 | (do ()
|
---|
1303 | ((pair-queue-empty-p b)
|
---|
1304 | #+grobner-check(grobner-test ring f f)
|
---|
1305 | (debug-cgb "~&GROBNER END")
|
---|
1306 | f)
|
---|
1307 | (let ((pair (pair-queue-remove b)))
|
---|
1308 | (when (null (pair-division-data pair))
|
---|
1309 | (setf (pair-division-data pair) (list (spoly ring
|
---|
1310 | (pair-first pair)
|
---|
1311 | (pair-second pair))
|
---|
1312 | (make-poly-zero)
|
---|
1313 | (funcall (ring-unit ring))
|
---|
1314 | 0)))
|
---|
1315 | (cond
|
---|
1316 | ((criterion-1 pair) nil)
|
---|
1317 | ((criterion-2 pair b-done f) nil)
|
---|
1318 | (t
|
---|
1319 | (let* ((dd (pair-division-data pair))
|
---|
1320 | (p (first dd))
|
---|
1321 | (sp (second dd))
|
---|
1322 | (c (third dd))
|
---|
1323 | (division-count (fourth dd)))
|
---|
1324 | (cond
|
---|
1325 | ((poly-zerop p) ;normal form completed
|
---|
1326 | (debug-cgb "~&~3T~d reduction~:p" division-count)
|
---|
1327 | (cond
|
---|
1328 | ((poly-zerop sp)
|
---|
1329 | (debug-cgb " ---> 0")
|
---|
1330 | nil)
|
---|
1331 | (t
|
---|
1332 | (setf sp (poly-nreverse sp)
|
---|
1333 | sp (poly-primitive-part ring sp)
|
---|
1334 | f (nconc f (list sp)))
|
---|
1335 | ;; Add new critical pairs
|
---|
1336 | (dolist (h f)
|
---|
1337 | (pair-queue-insert b (make-pair h sp)))
|
---|
1338 | (debug-cgb "~&Sugar: ~d Polynomials: ~d; Pairs left: ~d; Pairs done: ~d;"
|
---|
1339 | (pair-sugar pair) (length f) (pair-queue-size b)
|
---|
1340 | (hash-table-count b-done))))
|
---|
1341 | (setf (gethash (list (pair-first pair) (pair-second pair))
|
---|
1342 | b-done) t))
|
---|
1343 | (t ;normal form not complete
|
---|
1344 | (do ()
|
---|
1345 | ((cond
|
---|
1346 | ((> (poly-sugar sp) (pair-sugar pair))
|
---|
1347 | (debug-cgb "(~a)?" (poly-sugar sp))
|
---|
1348 | t)
|
---|
1349 | ((poly-zerop p)
|
---|
1350 | (debug-cgb ".")
|
---|
1351 | t)
|
---|
1352 | (t nil))
|
---|
1353 | (setf (first dd) p
|
---|
1354 | (second dd) sp
|
---|
1355 | (third dd) c
|
---|
1356 | (fourth dd) division-count
|
---|
1357 | (pair-sugar pair) (poly-sugar sp))
|
---|
1358 | (pair-queue-insert b pair))
|
---|
1359 | (multiple-value-setq (p sp c division-count)
|
---|
1360 | (normal-form-step ring f p sp c division-count))))))))))))
|
---|
1361 |
|
---|
1362 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1363 | ;;
|
---|
1364 | ;; Grobner Criteria
|
---|
1365 | ;;
|
---|
1366 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1367 |
|
---|
1368 | (defun criterion-1 (pair)
|
---|
1369 | "Returns T if the leading monomials of the two polynomials
|
---|
1370 | in G pointed to by the integers in PAIR have disjoint (relatively prime)
|
---|
1371 | monomials. This test is known as the first Buchberger criterion."
|
---|
1372 | (declare (type pair pair))
|
---|
1373 | (let ((f (pair-first pair))
|
---|
1374 | (g (pair-second pair)))
|
---|
1375 | (when (monom-rel-prime-p (poly-lm f) (poly-lm g))
|
---|
1376 | (debug-cgb ":1")
|
---|
1377 | (return-from criterion-1 t))))
|
---|
1378 |
|
---|
1379 | (defun criterion-2 (pair b-done partial-basis
|
---|
1380 | &aux (f (pair-first pair)) (g (pair-second pair))
|
---|
1381 | (place :before))
|
---|
1382 | "Returns T if the leading monomial of some element P of
|
---|
1383 | PARTIAL-BASIS divides the LCM of the leading monomials of the two
|
---|
1384 | polynomials in the polynomial list PARTIAL-BASIS, and P paired with
|
---|
1385 | each of the polynomials pointed to by the the PAIR has already been
|
---|
1386 | treated, as indicated by the absence in the hash table B-done."
|
---|
1387 | (declare (type pair pair) (type hash-table b-done)
|
---|
1388 | (type poly f g))
|
---|
1389 | ;; In the code below we assume that pairs are ordered as follows:
|
---|
1390 | ;; if PAIR is (I J) then I appears before J in the PARTIAL-BASIS.
|
---|
1391 | ;; We traverse the list PARTIAL-BASIS and keep track of where we
|
---|
1392 | ;; are, so that we can produce the pairs in the correct order
|
---|
1393 | ;; when we check whether they have been processed, i.e they
|
---|
1394 | ;; appear in the hash table B-done
|
---|
1395 | (dolist (h partial-basis nil)
|
---|
1396 | (cond
|
---|
1397 | ((eq h f)
|
---|
1398 | #+grobner-check(assert (eq place :before))
|
---|
1399 | (setf place :in-the-middle))
|
---|
1400 | ((eq h g)
|
---|
1401 | #+grobner-check(assert (eq place :in-the-middle))
|
---|
1402 | (setf place :after))
|
---|
1403 | ((and (monom-divides-monom-lcm-p (poly-lm h) (poly-lm f) (poly-lm g))
|
---|
1404 | (gethash (case place
|
---|
1405 | (:before (list h f))
|
---|
1406 | ((:in-the-middle :after) (list f h)))
|
---|
1407 | b-done)
|
---|
1408 | (gethash (case place
|
---|
1409 | ((:before :in-the-middle) (list h g))
|
---|
1410 | (:after (list g h)))
|
---|
1411 | b-done))
|
---|
1412 | (debug-cgb ":2")
|
---|
1413 | (return-from criterion-2 t)))))
|
---|
1414 |
|
---|
1415 | |
---|
1416 |
|
---|
1417 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1418 | ;;
|
---|
1419 | ;; An implementation of the algorithm of Gebauer and Moeller, as
|
---|
1420 | ;; described in the book of Becker-Weispfenning, p. 232
|
---|
1421 | ;;
|
---|
1422 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1423 |
|
---|
1424 | (defun gebauer-moeller (ring f start &optional (top-reduction-only $poly_top_reduction_only))
|
---|
1425 | "Compute Grobner basis by using the algorithm of Gebauer and
|
---|
1426 | Moeller. This algorithm is described as BUCHBERGERNEW2 in the book by
|
---|
1427 | Becker-Weispfenning entitled ``Grobner Bases''. This function assumes
|
---|
1428 | that all polynomials in F are non-zero."
|
---|
1429 | (declare (ignore top-reduction-only)
|
---|
1430 | (type fixnum start))
|
---|
1431 | (cond
|
---|
1432 | ((endp f) (return-from gebauer-moeller nil))
|
---|
1433 | ((endp (cdr f))
|
---|
1434 | (return-from gebauer-moeller (list (poly-primitive-part ring (car f))))))
|
---|
1435 | (debug-cgb "~&GROBNER BASIS - GEBAUER MOELLER ALGORITHM")
|
---|
1436 | (when (plusp start) (debug-cgb "~&INCREMENTAL:~d done" start))
|
---|
1437 | #+grobner-check (when (plusp start)
|
---|
1438 | (grobner-test ring (subseq f 0 start) (subseq f 0 start)))
|
---|
1439 | (let ((b (make-pair-queue))
|
---|
1440 | (g (subseq f 0 start))
|
---|
1441 | (f1 (subseq f start)))
|
---|
1442 | (do () ((endp f1))
|
---|
1443 | (multiple-value-setq (g b)
|
---|
1444 | (gebauer-moeller-update g b (poly-primitive-part ring (pop f1)))))
|
---|
1445 | (do () ((pair-queue-empty-p b))
|
---|
1446 | (let* ((pair (pair-queue-remove b))
|
---|
1447 | (g1 (pair-first pair))
|
---|
1448 | (g2 (pair-second pair))
|
---|
1449 | (h (normal-form ring (spoly ring g1 g2)
|
---|
1450 | g
|
---|
1451 | nil #| Always fully reduce! |#
|
---|
1452 | )))
|
---|
1453 | (unless (poly-zerop h)
|
---|
1454 | (setf h (poly-primitive-part ring h))
|
---|
1455 | (multiple-value-setq (g b)
|
---|
1456 | (gebauer-moeller-update g b h))
|
---|
1457 | (debug-cgb "~&Sugar: ~d Polynomials: ~d; Pairs left: ~d~%"
|
---|
1458 | (pair-sugar pair) (length g) (pair-queue-size b))
|
---|
1459 | )))
|
---|
1460 | #+grobner-check(grobner-test ring g f)
|
---|
1461 | (debug-cgb "~&GROBNER END")
|
---|
1462 | g))
|
---|
1463 |
|
---|
1464 | (defun gebauer-moeller-update (g b h
|
---|
1465 | &aux
|
---|
1466 | c d e
|
---|
1467 | (b-new (make-pair-queue))
|
---|
1468 | g-new)
|
---|
1469 | "An implementation of the auxillary UPDATE algorithm used by the
|
---|
1470 | Gebauer-Moeller algorithm. G is a list of polynomials, B is a list of
|
---|
1471 | critical pairs and H is a new polynomial which possibly will be added
|
---|
1472 | to G. The naming conventions used are very close to the one used in
|
---|
1473 | the book of Becker-Weispfenning."
|
---|
1474 | (declare
|
---|
1475 | #+allegro (dynamic-extent b)
|
---|
1476 | (type poly h)
|
---|
1477 | (type priority-queue b))
|
---|
1478 | (setf c g d nil)
|
---|
1479 | (do () ((endp c))
|
---|
1480 | (let ((g1 (pop c)))
|
---|
1481 | (declare (type poly g1))
|
---|
1482 | (when (or (monom-rel-prime-p (poly-lm h) (poly-lm g1))
|
---|
1483 | (and
|
---|
1484 | (notany #'(lambda (g2) (monom-lcm-divides-monom-lcm-p
|
---|
1485 | (poly-lm h) (poly-lm g2)
|
---|
1486 | (poly-lm h) (poly-lm g1)))
|
---|
1487 | c)
|
---|
1488 | (notany #'(lambda (g2) (monom-lcm-divides-monom-lcm-p
|
---|
1489 | (poly-lm h) (poly-lm g2)
|
---|
1490 | (poly-lm h) (poly-lm g1)))
|
---|
1491 | d)))
|
---|
1492 | (push g1 d))))
|
---|
1493 | (setf e nil)
|
---|
1494 | (do () ((endp d))
|
---|
1495 | (let ((g1 (pop d)))
|
---|
1496 | (declare (type poly g1))
|
---|
1497 | (unless (monom-rel-prime-p (poly-lm h) (poly-lm g1))
|
---|
1498 | (push g1 e))))
|
---|
1499 | (do () ((pair-queue-empty-p b))
|
---|
1500 | (let* ((pair (pair-queue-remove b))
|
---|
1501 | (g1 (pair-first pair))
|
---|
1502 | (g2 (pair-second pair)))
|
---|
1503 | (declare (type pair pair)
|
---|
1504 | (type poly g1 g2))
|
---|
1505 | (when (or (not (monom-divides-monom-lcm-p
|
---|
1506 | (poly-lm h)
|
---|
1507 | (poly-lm g1) (poly-lm g2)))
|
---|
1508 | (monom-lcm-equal-monom-lcm-p
|
---|
1509 | (poly-lm g1) (poly-lm h)
|
---|
1510 | (poly-lm g1) (poly-lm g2))
|
---|
1511 | (monom-lcm-equal-monom-lcm-p
|
---|
1512 | (poly-lm h) (poly-lm g2)
|
---|
1513 | (poly-lm g1) (poly-lm g2)))
|
---|
1514 | (pair-queue-insert b-new (make-pair g1 g2)))))
|
---|
1515 | (dolist (g3 e)
|
---|
1516 | (pair-queue-insert b-new (make-pair h g3)))
|
---|
1517 | (setf g-new nil)
|
---|
1518 | (do () ((endp g))
|
---|
1519 | (let ((g1 (pop g)))
|
---|
1520 | (declare (type poly g1))
|
---|
1521 | (unless (monom-divides-p (poly-lm h) (poly-lm g1))
|
---|
1522 | (push g1 g-new))))
|
---|
1523 | (push h g-new)
|
---|
1524 | (values g-new b-new))
|
---|
1525 |
|
---|
1526 | |
---|
1527 |
|
---|
1528 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1529 | ;;
|
---|
1530 | ;; Standard postprocessing of Grobner bases
|
---|
1531 | ;;
|
---|
1532 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1533 |
|
---|
1534 | (defun reduction (ring plist)
|
---|
1535 | "Reduce a list of polynomials PLIST, so that non of the terms in any of
|
---|
1536 | the polynomials is divisible by a leading monomial of another
|
---|
1537 | polynomial. Return the reduced list."
|
---|
1538 | (do ((q plist)
|
---|
1539 | (found t))
|
---|
1540 | ((not found)
|
---|
1541 | (mapcar #'(lambda (x) (poly-primitive-part ring x)) q))
|
---|
1542 | ;;Find p in Q such that p is reducible mod Q\{p}
|
---|
1543 | (setf found nil)
|
---|
1544 | (dolist (x q)
|
---|
1545 | (let ((q1 (remove x q)))
|
---|
1546 | (multiple-value-bind (h c div-count)
|
---|
1547 | (normal-form ring x q1 nil #| not a top reduction! |# )
|
---|
1548 | (declare (ignore c))
|
---|
1549 | (unless (zerop div-count)
|
---|
1550 | (setf found t q q1)
|
---|
1551 | (unless (poly-zerop h)
|
---|
1552 | (setf q (nconc q1 (list h))))
|
---|
1553 | (return)))))))
|
---|
1554 |
|
---|
1555 | (defun minimization (p)
|
---|
1556 | "Returns a sublist of the polynomial list P spanning the same
|
---|
1557 | monomial ideal as P but minimal, i.e. no leading monomial
|
---|
1558 | of a polynomial in the sublist divides the leading monomial
|
---|
1559 | of another polynomial."
|
---|
1560 | (do ((q p)
|
---|
1561 | (found t))
|
---|
1562 | ((not found) q)
|
---|
1563 | ;;Find p in Q such that lm(p) is in LM(Q\{p})
|
---|
1564 | (setf found nil
|
---|
1565 | q (dolist (x q q)
|
---|
1566 | (let ((q1 (remove x q)))
|
---|
1567 | (when (member-if #'(lambda (p) (monom-divides-p (poly-lm x) (poly-lm p))) q1)
|
---|
1568 | (setf found t)
|
---|
1569 | (return q1)))))))
|
---|
1570 |
|
---|
1571 | (defun poly-normalize (ring p &aux (c (poly-lc p)))
|
---|
1572 | "Divide a polynomial by its leading coefficient. It assumes
|
---|
1573 | that the division is possible, which may not always be the
|
---|
1574 | case in rings which are not fields. The exact division operator
|
---|
1575 | is assumed to be provided by the RING structure of the
|
---|
1576 | COEFFICIENT-RING package."
|
---|
1577 | (mapc #'(lambda (term)
|
---|
1578 | (setf (term-coeff term) (funcall (ring-div ring) (term-coeff term) c)))
|
---|
1579 | (poly-termlist p))
|
---|
1580 | p)
|
---|
1581 |
|
---|
1582 | (defun poly-normalize-list (ring plist)
|
---|
1583 | "Divide every polynomial in a list PLIST by its leading coefficient. "
|
---|
1584 | (mapcar #'(lambda (x) (poly-normalize ring x)) plist))
|
---|
1585 |
|
---|
1586 | |
---|
1587 |
|
---|
1588 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1589 | ;;
|
---|
1590 | ;; Algorithm and Pair heuristic selection
|
---|
1591 | ;;
|
---|
1592 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1593 |
|
---|
1594 | (defun find-grobner-function (algorithm)
|
---|
1595 | "Return a function which calculates Grobner basis, based on its
|
---|
1596 | names. Names currently used are either Lisp symbols, Maxima symbols or
|
---|
1597 | keywords."
|
---|
1598 | (ecase algorithm
|
---|
1599 | ((buchberger :buchberger $buchberger) #'buchberger)
|
---|
1600 | ((parallel-buchberger :parallel-buchberger $parallel_buchberger) #'parallel-buchberger)
|
---|
1601 | ((gebauer-moeller :gebauer_moeller $gebauer_moeller) #'gebauer-moeller)))
|
---|
1602 |
|
---|
1603 | (defun grobner (ring f &optional (start 0) (top-reduction-only nil))
|
---|
1604 | ;;(setf F (sort F #'< :key #'sugar))
|
---|
1605 | (funcall
|
---|
1606 | (find-grobner-function $poly_grobner_algorithm)
|
---|
1607 | ring f start top-reduction-only))
|
---|
1608 |
|
---|
1609 | (defun reduced-grobner (ring f &optional (start 0) (top-reduction-only $poly_top_reduction_only))
|
---|
1610 | (reduction ring (grobner ring f start top-reduction-only)))
|
---|
1611 |
|
---|
1612 | (defun set-pair-heuristic (method)
|
---|
1613 | "Sets up variables *PAIR-KEY-FUNCTION* and *PAIR-ORDER* used
|
---|
1614 | to determine the priority of critical pairs in the priority queue."
|
---|
1615 | (ecase method
|
---|
1616 | ((sugar :sugar $sugar)
|
---|
1617 | (setf *pair-key-function* #'sugar-pair-key
|
---|
1618 | *pair-order* #'sugar-order))
|
---|
1619 | ; ((minimal-mock-spoly :minimal-mock-spoly $minimal_mock_spoly)
|
---|
1620 | ; (setf *pair-key-function* #'mock-spoly
|
---|
1621 | ; *pair-order* #'mock-spoly-order))
|
---|
1622 | ((minimal-lcm :minimal-lcm $minimal_lcm)
|
---|
1623 | (setf *pair-key-function* #'(lambda (p q)
|
---|
1624 | (monom-lcm (poly-lm p) (poly-lm q)))
|
---|
1625 | *pair-order* #'reverse-monomial-order))
|
---|
1626 | ((minimal-total-degree :minimal-total-degree $minimal_total_degree)
|
---|
1627 | (setf *pair-key-function* #'(lambda (p q)
|
---|
1628 | (monom-total-degree
|
---|
1629 | (monom-lcm (poly-lm p) (poly-lm q))))
|
---|
1630 | *pair-order* #'<))
|
---|
1631 | ((minimal-length :minimal-length $minimal_length)
|
---|
1632 | (setf *pair-key-function* #'(lambda (p q)
|
---|
1633 | (+ (poly-length p) (poly-length q)))
|
---|
1634 | *pair-order* #'<))))
|
---|
1635 |
|
---|
1636 | |
---|
1637 |
|
---|
1638 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1639 | ;;
|
---|
1640 | ;; Operations in ideal theory
|
---|
1641 | ;;
|
---|
1642 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1643 |
|
---|
1644 | ;; Does the term depend on variable K?
|
---|
1645 | (defun term-depends-p (term k)
|
---|
1646 | "Return T if the term TERM depends on variable number K."
|
---|
1647 | (monom-depends-p (term-monom term) k))
|
---|
1648 |
|
---|
1649 | ;; Does the polynomial P depend on variable K?
|
---|
1650 | (defun poly-depends-p (p k)
|
---|
1651 | "Return T if the term polynomial P depends on variable number K."
|
---|
1652 | (some #'(lambda (term) (term-depends-p term k)) (poly-termlist p)))
|
---|
1653 |
|
---|
1654 | (defun ring-intersection (plist k)
|
---|
1655 | "This function assumes that polynomial list PLIST is a Grobner basis
|
---|
1656 | and it calculates the intersection with the ring R[x[k+1],...,x[n]], i.e.
|
---|
1657 | it discards polynomials which depend on variables x[0], x[1], ..., x[k]."
|
---|
1658 | (dotimes (i k plist)
|
---|
1659 | (setf plist
|
---|
1660 | (remove-if #'(lambda (p)
|
---|
1661 | (poly-depends-p p i))
|
---|
1662 | plist))))
|
---|
1663 |
|
---|
1664 | (defun elimination-ideal (ring flist k
|
---|
1665 | &optional (top-reduction-only $poly_top_reduction_only) (start 0)
|
---|
1666 | &aux (*monomial-order*
|
---|
1667 | (or *elimination-order*
|
---|
1668 | (elimination-order k))))
|
---|
1669 | (ring-intersection (reduced-grobner ring flist start top-reduction-only) k))
|
---|
1670 |
|
---|
1671 | (defun colon-ideal (ring f g &optional (top-reduction-only $poly_top_reduction_only))
|
---|
1672 | "Returns the reduced Grobner basis of the colon ideal Id(F):Id(G),
|
---|
1673 | where F and G are two lists of polynomials. The colon ideal I:J is
|
---|
1674 | defined as the set of polynomials H such that for all polynomials W in
|
---|
1675 | J the polynomial W*H belongs to I."
|
---|
1676 | (cond
|
---|
1677 | ((endp g)
|
---|
1678 | ;;Id(G) consists of 0 only so W*0=0 belongs to Id(F)
|
---|
1679 | (if (every #'poly-zerop f)
|
---|
1680 | (error "First ideal must be non-zero.")
|
---|
1681 | (list (make-poly
|
---|
1682 | (list (make-term
|
---|
1683 | (make-monom (monom-dimension (poly-lm (find-if-not #'poly-zerop f)))
|
---|
1684 | :initial-element 0)
|
---|
1685 | (funcall (ring-unit ring))))))))
|
---|
1686 | ((endp (cdr g))
|
---|
1687 | (colon-ideal-1 ring f (car g) top-reduction-only))
|
---|
1688 | (t
|
---|
1689 | (ideal-intersection ring
|
---|
1690 | (colon-ideal-1 ring f (car g) top-reduction-only)
|
---|
1691 | (colon-ideal ring f (rest g) top-reduction-only)
|
---|
1692 | top-reduction-only))))
|
---|
1693 |
|
---|
1694 | (defun colon-ideal-1 (ring f g &optional (top-reduction-only $poly_top_reduction_only))
|
---|
1695 | "Returns the reduced Grobner basis of the colon ideal Id(F):Id({G}), where
|
---|
1696 | F is a list of polynomials and G is a polynomial."
|
---|
1697 | (mapcar #'(lambda (x) (poly-exact-divide ring x g)) (ideal-intersection ring f (list g) top-reduction-only)))
|
---|
1698 |
|
---|
1699 |
|
---|
1700 | (defun ideal-intersection (ring f g &optional (top-reduction-only $poly_top_reduction_only)
|
---|
1701 | &aux (*monomial-order* (or *elimination-order*
|
---|
1702 | #'elimination-order-1)))
|
---|
1703 | (mapcar #'poly-contract
|
---|
1704 | (ring-intersection
|
---|
1705 | (reduced-grobner
|
---|
1706 | ring
|
---|
1707 | (append (mapcar #'(lambda (p) (poly-extend p (make-monom 1 :initial-element 1))) f)
|
---|
1708 | (mapcar #'(lambda (p)
|
---|
1709 | (poly-append (poly-extend (poly-uminus ring p)
|
---|
1710 | (make-monom 1 :initial-element 1))
|
---|
1711 | (poly-extend p)))
|
---|
1712 | g))
|
---|
1713 | 0
|
---|
1714 | top-reduction-only)
|
---|
1715 | 1)))
|
---|
1716 |
|
---|
1717 | (defun poly-lcm (ring f g)
|
---|
1718 | "Return LCM (least common multiple) of two polynomials F and G.
|
---|
1719 | The polynomials must be ordered according to monomial order PRED
|
---|
1720 | and their coefficients must be compatible with the RING structure
|
---|
1721 | defined in the COEFFICIENT-RING package."
|
---|
1722 | (cond
|
---|
1723 | ((poly-zerop f) f)
|
---|
1724 | ((poly-zerop g) g)
|
---|
1725 | ((and (endp (cdr (poly-termlist f))) (endp (cdr (poly-termlist g))))
|
---|
1726 | (let ((m (monom-lcm (poly-lm f) (poly-lm g))))
|
---|
1727 | (make-poly-from-termlist (list (make-term m (funcall (ring-lcm ring) (poly-lc f) (poly-lc g)))))))
|
---|
1728 | (t
|
---|
1729 | (multiple-value-bind (f f-cont)
|
---|
1730 | (poly-primitive-part ring f)
|
---|
1731 | (multiple-value-bind (g g-cont)
|
---|
1732 | (poly-primitive-part ring g)
|
---|
1733 | (scalar-times-poly
|
---|
1734 | ring
|
---|
1735 | (funcall (ring-lcm ring) f-cont g-cont)
|
---|
1736 | (poly-primitive-part ring (car (ideal-intersection ring (list f) (list g) nil)))))))))
|
---|
1737 |
|
---|
1738 | ;; Do two Grobner bases yield the same ideal?
|
---|
1739 | (defun grobner-equal (ring g1 g2)
|
---|
1740 | "Returns T if two lists of polynomials G1 and G2, assumed to be Grobner bases,
|
---|
1741 | generate the same ideal, and NIL otherwise."
|
---|
1742 | (and (grobner-subsetp ring g1 g2) (grobner-subsetp ring g2 g1)))
|
---|
1743 |
|
---|
1744 | (defun grobner-subsetp (ring g1 g2)
|
---|
1745 | "Returns T if a list of polynomials G1 generates
|
---|
1746 | an ideal contained in the ideal generated by a polynomial list G2,
|
---|
1747 | both G1 and G2 assumed to be Grobner bases. Returns NIL otherwise."
|
---|
1748 | (every #'(lambda (p) (grobner-member ring p g2)) g1))
|
---|
1749 |
|
---|
1750 | (defun grobner-member (ring p g)
|
---|
1751 | "Returns T if a polynomial P belongs to the ideal generated by the
|
---|
1752 | polynomial list G, which is assumed to be a Grobner basis. Returns NIL otherwise."
|
---|
1753 | (poly-zerop (normal-form ring p g nil)))
|
---|
1754 |
|
---|
1755 | ;; Calculate F : p^inf
|
---|
1756 | (defun ideal-saturation-1 (ring f p start &optional (top-reduction-only $poly_top_reduction_only)
|
---|
1757 | &aux (*monomial-order* (or *elimination-order*
|
---|
1758 | #'elimination-order-1)))
|
---|
1759 | "Returns the reduced Grobner basis of the saturation of the ideal
|
---|
1760 | generated by a polynomial list F in the ideal generated by a single
|
---|
1761 | polynomial P. The saturation ideal is defined as the set of
|
---|
1762 | polynomials H such for some natural number n (* (EXPT P N) H) is in the ideal
|
---|
1763 | F. Geometrically, over an algebraically closed field, this is the set
|
---|
1764 | of polynomials in the ideal generated by F which do not identically
|
---|
1765 | vanish on the variety of P."
|
---|
1766 | (mapcar
|
---|
1767 | #'poly-contract
|
---|
1768 | (ring-intersection
|
---|
1769 | (reduced-grobner
|
---|
1770 | ring
|
---|
1771 | (saturation-extension-1 ring f p)
|
---|
1772 | start top-reduction-only)
|
---|
1773 | 1)))
|
---|
1774 |
|
---|
1775 |
|
---|
1776 |
|
---|
1777 | ;; Calculate F : p1^inf : p2^inf : ... : ps^inf
|
---|
1778 | (defun ideal-polysaturation-1 (ring f plist start &optional (top-reduction-only $poly_top_reduction_only))
|
---|
1779 | "Returns the reduced Grobner basis of the ideal obtained by a
|
---|
1780 | sequence of successive saturations in the polynomials
|
---|
1781 | of the polynomial list PLIST of the ideal generated by the
|
---|
1782 | polynomial list F."
|
---|
1783 | (cond
|
---|
1784 | ((endp plist) (reduced-grobner ring f start top-reduction-only))
|
---|
1785 | (t (let ((g (ideal-saturation-1 ring f (car plist) start top-reduction-only)))
|
---|
1786 | (ideal-polysaturation-1 ring g (rest plist) (length g) top-reduction-only)))))
|
---|
1787 |
|
---|
1788 | (defun ideal-saturation (ring f g start &optional (top-reduction-only $poly_top_reduction_only)
|
---|
1789 | &aux
|
---|
1790 | (k (length g))
|
---|
1791 | (*monomial-order* (or *elimination-order*
|
---|
1792 | (elimination-order k))))
|
---|
1793 | "Returns the reduced Grobner basis of the saturation of the ideal
|
---|
1794 | generated by a polynomial list F in the ideal generated a polynomial
|
---|
1795 | list G. The saturation ideal is defined as the set of polynomials H
|
---|
1796 | such for some natural number n and some P in the ideal generated by G
|
---|
1797 | the polynomial P**N * H is in the ideal spanned by F. Geometrically,
|
---|
1798 | over an algebraically closed field, this is the set of polynomials in
|
---|
1799 | the ideal generated by F which do not identically vanish on the
|
---|
1800 | variety of G."
|
---|
1801 | (mapcar
|
---|
1802 | #'(lambda (q) (poly-contract q k))
|
---|
1803 | (ring-intersection
|
---|
1804 | (reduced-grobner ring
|
---|
1805 | (polysaturation-extension ring f g)
|
---|
1806 | start
|
---|
1807 | top-reduction-only)
|
---|
1808 | k)))
|
---|
1809 |
|
---|
1810 | (defun ideal-polysaturation (ring f ideal-list start &optional (top-reduction-only $poly_top_reduction_only))
|
---|
1811 | "Returns the reduced Grobner basis of the ideal obtained by a
|
---|
1812 | successive applications of IDEAL-SATURATION to F and lists of
|
---|
1813 | polynomials in the list IDEAL-LIST."
|
---|
1814 | (cond
|
---|
1815 | ((endp ideal-list) f)
|
---|
1816 | (t (let ((h (ideal-saturation ring f (car ideal-list) start top-reduction-only)))
|
---|
1817 | (ideal-polysaturation ring h (rest ideal-list) (length h) top-reduction-only)))))
|
---|
1818 |
|
---|
1819 | |
---|
1820 |
|
---|
1821 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1822 | ;;
|
---|
1823 | ;; Set up the coefficients to be polynomials
|
---|
1824 | ;;
|
---|
1825 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1826 |
|
---|
1827 | ;; (defun poly-ring (ring vars)
|
---|
1828 | ;; (make-ring
|
---|
1829 | ;; :parse #'(lambda (expr) (poly-eval ring expr vars))
|
---|
1830 | ;; :unit #'(lambda () (poly-unit ring (length vars)))
|
---|
1831 | ;; :zerop #'poly-zerop
|
---|
1832 | ;; :add #'(lambda (x y) (poly-add ring x y))
|
---|
1833 | ;; :sub #'(lambda (x y) (poly-sub ring x y))
|
---|
1834 | ;; :uminus #'(lambda (x) (poly-uminus ring x))
|
---|
1835 | ;; :mul #'(lambda (x y) (poly-mul ring x y))
|
---|
1836 | ;; :div #'(lambda (x y) (poly-exact-divide ring x y))
|
---|
1837 | ;; :lcm #'(lambda (x y) (poly-lcm ring x y))
|
---|
1838 | ;; :ezgcd #'(lambda (x y &aux (gcd (poly-gcd ring x y)))
|
---|
1839 | ;; (values gcd
|
---|
1840 | ;; (poly-exact-divide ring x gcd)
|
---|
1841 | ;; (poly-exact-divide ring y gcd)))
|
---|
1842 | ;; :gcd #'(lambda (x y) (poly-gcd x y))))
|
---|
1843 |
|
---|
1844 | |
---|
1845 |
|
---|
1846 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1847 | ;;
|
---|
1848 | ;; Conversion from internal to infix form
|
---|
1849 | ;;
|
---|
1850 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1851 |
|
---|
1852 | (defun coerce-to-infix (poly-type object vars)
|
---|
1853 | (case poly-type
|
---|
1854 | (:termlist
|
---|
1855 | `(+ ,@(mapcar #'(lambda (term) (coerce-to-infix :term term vars)) object)))
|
---|
1856 | (:polynomial
|
---|
1857 | (coerce-to-infix :termlist (poly-termlist object) vars))
|
---|
1858 | (:poly-list
|
---|
1859 | `([ ,@(mapcar #'(lambda (p) (coerce-to-infix :polynomial p vars)) object)))
|
---|
1860 | (:term
|
---|
1861 | `(* ,(term-coeff object)
|
---|
1862 | ,@(mapcar #'(lambda (var power) `(expt ,var ,power))
|
---|
1863 | vars (monom-exponents (term-monom object)))))
|
---|
1864 | (otherwise
|
---|
1865 | object)))
|
---|
1866 |
|
---|
1867 | |
---|
1868 |
|
---|
1869 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1870 | ;;
|
---|
1871 | ;; Maxima expression ring
|
---|
1872 | ;;
|
---|
1873 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1874 |
|
---|
1875 | (defparameter *expression-ring*
|
---|
1876 | (make-ring
|
---|
1877 | ;;(defun coeff-zerop (expr) (meval1 `(($is) (($equal) ,expr 0))))
|
---|
1878 | :parse #'(lambda (expr)
|
---|
1879 | (when modulus (setf expr ($rat expr)))
|
---|
1880 | expr)
|
---|
1881 | :unit #'(lambda () (if modulus ($rat 1) 1))
|
---|
1882 | :zerop #'(lambda (expr)
|
---|
1883 | ;;When is exactly a maxima expression equal to 0?
|
---|
1884 | (cond ((numberp expr)
|
---|
1885 | (= expr 0))
|
---|
1886 | ((atom expr) nil)
|
---|
1887 | (t
|
---|
1888 | (case (caar expr)
|
---|
1889 | (mrat (eql ($ratdisrep expr) 0))
|
---|
1890 | (otherwise (eql ($totaldisrep expr) 0))))))
|
---|
1891 | :add #'(lambda (x y) (m+ x y))
|
---|
1892 | :sub #'(lambda (x y) (m- x y))
|
---|
1893 | :uminus #'(lambda (x) (m- x))
|
---|
1894 | :mul #'(lambda (x y) (m* x y))
|
---|
1895 | ;;(defun coeff-div (x y) (cadr ($divide x y)))
|
---|
1896 | :div #'(lambda (x y) (m// x y))
|
---|
1897 | :lcm #'(lambda (x y) (meval1 `((|$LCM|) ,x ,y)))
|
---|
1898 | :ezgcd #'(lambda (x y) (apply #'values (cdr ($ezgcd ($totaldisrep x) ($totaldisrep y)))))
|
---|
1899 | ;; :gcd #'(lambda (x y) (second ($ezgcd x y)))))
|
---|
1900 | :gcd #'(lambda (x y) ($gcd x y))))
|
---|
1901 |
|
---|
1902 | (defvar *maxima-ring* *expression-ring*
|
---|
1903 | "The ring of coefficients, over which all polynomials
|
---|
1904 | are assumed to be defined.")
|
---|
1905 |
|
---|
1906 | |
---|
1907 |
|
---|
1908 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1909 | ;;
|
---|
1910 | ;; Maxima expression parsing
|
---|
1911 | ;;
|
---|
1912 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1913 |
|
---|
1914 | (defun equal-test-p (expr1 expr2)
|
---|
1915 | (alike1 expr1 expr2))
|
---|
1916 |
|
---|
1917 | (defun coerce-maxima-list (expr)
|
---|
1918 | "convert a maxima list to lisp list."
|
---|
1919 | (cond
|
---|
1920 | ((and (consp (car expr)) (eql (caar expr) 'mlist)) (cdr expr))
|
---|
1921 | (t expr)))
|
---|
1922 |
|
---|
1923 | (defun free-of-vars (expr vars) (apply #'$freeof `(,@vars ,expr)))
|
---|
1924 |
|
---|
1925 | (defun parse-poly (expr vars &aux (vars (coerce-maxima-list vars)))
|
---|
1926 | "Convert a maxima polynomial expression EXPR in variables VARS to internal form."
|
---|
1927 | (labels ((parse (arg) (parse-poly arg vars))
|
---|
1928 | (parse-list (args) (mapcar #'parse args)))
|
---|
1929 | (cond
|
---|
1930 | ((eql expr 0) (make-poly-zero))
|
---|
1931 | ((member expr vars :test #'equal-test-p)
|
---|
1932 | (let ((pos (position expr vars :test #'equal-test-p)))
|
---|
1933 | (make-variable *maxima-ring* (length vars) pos)))
|
---|
1934 | ((free-of-vars expr vars)
|
---|
1935 | ;;This means that variable-free CRE and Poisson forms will be converted
|
---|
1936 | ;;to coefficients intact
|
---|
1937 | (coerce-coeff *maxima-ring* expr vars))
|
---|
1938 | (t
|
---|
1939 | (case (caar expr)
|
---|
1940 | (mplus (reduce #'(lambda (x y) (poly-add *maxima-ring* x y)) (parse-list (cdr expr))))
|
---|
1941 | (mminus (poly-uminus *maxima-ring* (parse (cadr expr))))
|
---|
1942 | (mtimes
|
---|
1943 | (if (endp (cddr expr)) ;unary
|
---|
1944 | (parse (cdr expr))
|
---|
1945 | (reduce #'(lambda (p q) (poly-mul *maxima-ring* p q)) (parse-list (cdr expr)))))
|
---|
1946 | (mexpt
|
---|
1947 | (cond
|
---|
1948 | ((member (cadr expr) vars :test #'equal-test-p)
|
---|
1949 | ;;Special handling of (expt var pow)
|
---|
1950 | (let ((pos (position (cadr expr) vars :test #'equal-test-p)))
|
---|
1951 | (make-variable *maxima-ring* (length vars) pos (caddr expr))))
|
---|
1952 | ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
|
---|
1953 | ;; Negative power means division in coefficient ring
|
---|
1954 | ;; Non-integer power means non-polynomial coefficient
|
---|
1955 | (mtell "~%Warning: Expression ~%~M~%contains power which is not a positive integer. Parsing as coefficient.~%"
|
---|
1956 | expr)
|
---|
1957 | (coerce-coeff *maxima-ring* expr vars))
|
---|
1958 | (t (poly-expt *maxima-ring* (parse (cadr expr)) (caddr expr)))))
|
---|
1959 | (mrat (parse ($ratdisrep expr)))
|
---|
1960 | (mpois (parse ($outofpois expr)))
|
---|
1961 | (otherwise
|
---|
1962 | (coerce-coeff *maxima-ring* expr vars)))))))
|
---|
1963 |
|
---|
1964 | (defun parse-poly-list (expr vars)
|
---|
1965 | (case (caar expr)
|
---|
1966 | (mlist (mapcar #'(lambda (p) (parse-poly p vars)) (cdr expr)))
|
---|
1967 | (t (merror "Expression ~M is not a list of polynomials in variables ~M."
|
---|
1968 | expr vars))))
|
---|
1969 | (defun parse-poly-list-list (poly-list-list vars)
|
---|
1970 | (mapcar #'(lambda (g) (parse-poly-list g vars)) (coerce-maxima-list poly-list-list)))
|
---|
1971 |
|
---|
1972 | |
---|
1973 |
|
---|
1974 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1975 | ;;
|
---|
1976 | ;; Order utilities
|
---|
1977 | ;;
|
---|
1978 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
1979 | (defun find-order (order)
|
---|
1980 | "This function returns the order function bases on its name."
|
---|
1981 | (cond
|
---|
1982 | ((null order) nil)
|
---|
1983 | ((symbolp order)
|
---|
1984 | (case order
|
---|
1985 | ((lex :lex $lex) #'lex>)
|
---|
1986 | ((grlex :grlex $grlex) #'grlex>)
|
---|
1987 | ((grevlex :grevlex $grevlex) #'grevlex>)
|
---|
1988 | ((invlex :invlex $invlex) #'invlex>)
|
---|
1989 | ((elimination-order-1 :elimination-order-1 elimination_order_1) #'elimination-order-1)
|
---|
1990 | (otherwise
|
---|
1991 | (mtell "~%Warning: Order ~M not found. Using default.~%" order))))
|
---|
1992 | (t
|
---|
1993 | (mtell "~%Order specification ~M is not recognized. Using default.~%" order)
|
---|
1994 | nil)))
|
---|
1995 |
|
---|
1996 | (defun find-ring (ring)
|
---|
1997 | "This function returns the ring structure bases on input symbol."
|
---|
1998 | (cond
|
---|
1999 | ((null ring) nil)
|
---|
2000 | ((symbolp ring)
|
---|
2001 | (case ring
|
---|
2002 | ((expression-ring :expression-ring $expression_ring) *expression-ring*)
|
---|
2003 | ((ring-of-integers :ring-of-integers $ring_of_integers) *ring-of-integers*)
|
---|
2004 | (otherwise
|
---|
2005 | (mtell "~%Warning: Ring ~M not found. Using default.~%" ring))))
|
---|
2006 | (t
|
---|
2007 | (mtell "~%Ring specification ~M is not recognized. Using default.~%" ring)
|
---|
2008 | nil)))
|
---|
2009 |
|
---|
2010 | (defmacro with-monomial-order ((order) &body body)
|
---|
2011 | "Evaluate BODY with monomial order set to ORDER."
|
---|
2012 | `(let ((*monomial-order* (or (find-order ,order) *monomial-order*)))
|
---|
2013 | . ,body))
|
---|
2014 |
|
---|
2015 | (defmacro with-coefficient-ring ((ring) &body body)
|
---|
2016 | "Evaluate BODY with coefficient ring set to RING."
|
---|
2017 | `(let ((*maxima-ring* (or (find-ring ,ring) *maxima-ring*)))
|
---|
2018 | . ,body))
|
---|
2019 |
|
---|
2020 | (defmacro with-elimination-orders ((primary secondary elimination-order)
|
---|
2021 | &body body)
|
---|
2022 | "Evaluate BODY with primary and secondary elimination orders set to PRIMARY and SECONDARY."
|
---|
2023 | `(let ((*primary-elimination-order* (or (find-order ,primary) *primary-elimination-order*))
|
---|
2024 | (*secondary-elimination-order* (or (find-order ,secondary) *secondary-elimination-order*))
|
---|
2025 | (*elimination-order* (or (find-order ,elimination-order) *elimination-order*)))
|
---|
2026 | . ,body))
|
---|
2027 |
|
---|
2028 | |
---|
2029 |
|
---|
2030 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
2031 | ;;
|
---|
2032 | ;; Conversion from internal form to Maxima general form
|
---|
2033 | ;;
|
---|
2034 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
2035 |
|
---|
2036 | (defun maxima-head ()
|
---|
2037 | (if $poly_return_term_list
|
---|
2038 | '(mlist)
|
---|
2039 | '(mplus)))
|
---|
2040 |
|
---|
2041 | (defun coerce-to-maxima (poly-type object vars)
|
---|
2042 | (case poly-type
|
---|
2043 | (:polynomial
|
---|
2044 | `(,(maxima-head) ,@(mapcar #'(lambda (term) (coerce-to-maxima :term term vars)) (poly-termlist object))))
|
---|
2045 | (:poly-list
|
---|
2046 | `((mlist) ,@(mapcar #'(lambda (p) ($ratdisrep (coerce-to-maxima :polynomial p vars))) object)))
|
---|
2047 | (:term
|
---|
2048 | `((mtimes) ,($ratdisrep (term-coeff object))
|
---|
2049 | ,@(mapcar #'(lambda (var power) `((mexpt) ,var ,power))
|
---|
2050 | vars (monom-exponents (term-monom object)))))
|
---|
2051 | ;; Assumes that Lisp and Maxima logicals coincide
|
---|
2052 | (:logical object)
|
---|
2053 | (otherwise
|
---|
2054 | object)))
|
---|
2055 |
|
---|
2056 | |
---|
2057 |
|
---|
2058 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
2059 | ;;
|
---|
2060 | ;; Macro facility for writing Maxima-level wrappers for
|
---|
2061 | ;; functions operating on internal representation
|
---|
2062 | ;;
|
---|
2063 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
2064 |
|
---|
2065 | (defmacro with-parsed-polynomials (((maxima-vars &optional (maxima-new-vars nil new-vars-supplied-p))
|
---|
2066 | &key (polynomials nil)
|
---|
2067 | (poly-lists nil)
|
---|
2068 | (poly-list-lists nil)
|
---|
2069 | (value-type nil))
|
---|
2070 | &body body
|
---|
2071 | &aux (vars (gensym))
|
---|
2072 | (new-vars (gensym)))
|
---|
2073 | `(let ((,vars (coerce-maxima-list ,maxima-vars))
|
---|
2074 | ,@(when new-vars-supplied-p
|
---|
2075 | (list `(,new-vars (coerce-maxima-list ,maxima-new-vars)))))
|
---|
2076 | (coerce-to-maxima
|
---|
2077 | ,value-type
|
---|
2078 | (with-coefficient-ring ($poly_coefficient_ring)
|
---|
2079 | (with-monomial-order ($poly_monomial_order)
|
---|
2080 | (with-elimination-orders ($poly_primary_elimination_order
|
---|
2081 | $poly_secondary_elimination_order
|
---|
2082 | $poly_elimination_order)
|
---|
2083 | (let ,(let ((args nil))
|
---|
2084 | (dolist (p polynomials args)
|
---|
2085 | (setf args (cons `(,p (parse-poly ,p ,vars)) args)))
|
---|
2086 | (dolist (p poly-lists args)
|
---|
2087 | (setf args (cons `(,p (parse-poly-list ,p ,vars)) args)))
|
---|
2088 | (dolist (p poly-list-lists args)
|
---|
2089 | (setf args (cons `(,p (parse-poly-list-list ,p ,vars)) args))))
|
---|
2090 | . ,body))))
|
---|
2091 | ,(if new-vars-supplied-p
|
---|
2092 | `(append ,vars ,new-vars)
|
---|
2093 | vars))))
|
---|
2094 |
|
---|
2095 | (defmacro define-unop (maxima-name fun-name
|
---|
2096 | &optional (documentation nil documentation-supplied-p))
|
---|
2097 | "Define a MAXIMA-level unary operator MAXIMA-NAME corresponding to unary function FUN-NAME."
|
---|
2098 | `(defun ,maxima-name (p vars
|
---|
2099 | &aux
|
---|
2100 | (vars (coerce-maxima-list vars))
|
---|
2101 | (p (parse-poly p vars)))
|
---|
2102 | ,@(when documentation-supplied-p (list documentation))
|
---|
2103 | (coerce-to-maxima :polynomial (,fun-name *maxima-ring* p) vars)))
|
---|
2104 |
|
---|
2105 | (defmacro define-binop (maxima-name fun-name
|
---|
2106 | &optional (documentation nil documentation-supplied-p))
|
---|
2107 | "Define a MAXIMA-level binary operator MAXIMA-NAME corresponding to binary function FUN-NAME."
|
---|
2108 | `(defmfun ,maxima-name (p q vars
|
---|
2109 | &aux
|
---|
2110 | (vars (coerce-maxima-list vars))
|
---|
2111 | (p (parse-poly p vars))
|
---|
2112 | (q (parse-poly q vars)))
|
---|
2113 | ,@(when documentation-supplied-p (list documentation))
|
---|
2114 | (coerce-to-maxima :polynomial (,fun-name *maxima-ring* p q) vars)))
|
---|
2115 |
|
---|
2116 | |
---|
2117 |
|
---|
2118 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
2119 | ;;
|
---|
2120 | ;; Maxima-level interface functions
|
---|
2121 | ;;
|
---|
2122 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
2123 |
|
---|
2124 | ;; Auxillary function for removing zero polynomial
|
---|
2125 | (defun remzero (plist) (remove #'poly-zerop plist))
|
---|
2126 |
|
---|
2127 | ;;Simple operators
|
---|
2128 |
|
---|
2129 | (define-binop $poly_add poly-add
|
---|
2130 | "Adds two polynomials P and Q")
|
---|
2131 |
|
---|
2132 | (define-binop $poly_subtract poly-sub
|
---|
2133 | "Subtracts a polynomial Q from P.")
|
---|
2134 |
|
---|
2135 | (define-binop $poly_multiply poly-mul
|
---|
2136 | "Returns the product of polynomials P and Q.")
|
---|
2137 |
|
---|
2138 | (define-binop $poly_s_polynomial spoly
|
---|
2139 | "Returns the syzygy polynomial (S-polynomial) of two polynomials P and Q.")
|
---|
2140 |
|
---|
2141 | (define-unop $poly_primitive_part poly-primitive-part
|
---|
2142 | "Returns the polynomial P divided by GCD of its coefficients.")
|
---|
2143 |
|
---|
2144 | (define-unop $poly_normalize poly-normalize
|
---|
2145 | "Returns the polynomial P divided by the leading coefficient.")
|
---|
2146 |
|
---|
2147 | ;;Functions
|
---|
2148 |
|
---|
2149 | (defmfun $poly_expand (p vars)
|
---|
2150 | "This function is equivalent to EXPAND(P) if P parses correctly to a polynomial.
|
---|
2151 | If the representation is not compatible with a polynomial in variables VARS,
|
---|
2152 | the result is an error."
|
---|
2153 | (with-parsed-polynomials ((vars) :polynomials (p)
|
---|
2154 | :value-type :polynomial)
|
---|
2155 | p))
|
---|
2156 |
|
---|
2157 | (defmfun $poly_expt (p n vars)
|
---|
2158 | (with-parsed-polynomials ((vars) :polynomials (p) :value-type :polynomial)
|
---|
2159 | (poly-expt *maxima-ring* p n)))
|
---|
2160 |
|
---|
2161 | (defmfun $poly_content (p vars)
|
---|
2162 | (with-parsed-polynomials ((vars) :polynomials (p))
|
---|
2163 | (poly-content *maxima-ring* p)))
|
---|
2164 |
|
---|
2165 | (defmfun $poly_pseudo_divide (f fl vars
|
---|
2166 | &aux (vars (coerce-maxima-list vars))
|
---|
2167 | (f (parse-poly f vars))
|
---|
2168 | (fl (parse-poly-list fl vars)))
|
---|
2169 | (multiple-value-bind (quot rem c division-count)
|
---|
2170 | (poly-pseudo-divide *maxima-ring* f fl)
|
---|
2171 | `((mlist)
|
---|
2172 | ,(coerce-to-maxima :poly-list quot vars)
|
---|
2173 | ,(coerce-to-maxima :polynomial rem vars)
|
---|
2174 | ,c
|
---|
2175 | ,division-count)))
|
---|
2176 |
|
---|
2177 | (defmfun $poly_exact_divide (f g vars)
|
---|
2178 | (with-parsed-polynomials ((vars) :polynomials (f g) :value-type :polynomial)
|
---|
2179 | (poly-exact-divide *maxima-ring* f g)))
|
---|
2180 |
|
---|
2181 | (defmfun $poly_normal_form (f fl vars)
|
---|
2182 | (with-parsed-polynomials ((vars) :polynomials (f)
|
---|
2183 | :poly-lists (fl)
|
---|
2184 | :value-type :polynomial)
|
---|
2185 | (normal-form *maxima-ring* f (remzero fl) nil)))
|
---|
2186 |
|
---|
2187 | (defmfun $poly_buchberger_criterion (g vars)
|
---|
2188 | (with-parsed-polynomials ((vars) :poly-lists (g) :value-type :logical)
|
---|
2189 | (buchberger-criterion *maxima-ring* g)))
|
---|
2190 |
|
---|
2191 | (defmfun $poly_buchberger (fl vars)
|
---|
2192 | (with-parsed-polynomials ((vars) :poly-lists (fl) :value-type :poly-list)
|
---|
2193 | (buchberger *maxima-ring* (remzero fl) 0 nil)))
|
---|
2194 |
|
---|
2195 | (defmfun $poly_reduction (plist vars)
|
---|
2196 | (with-parsed-polynomials ((vars) :poly-lists (plist)
|
---|
2197 | :value-type :poly-list)
|
---|
2198 | (reduction *maxima-ring* plist)))
|
---|
2199 |
|
---|
2200 | (defmfun $poly_minimization (plist vars)
|
---|
2201 | (with-parsed-polynomials ((vars) :poly-lists (plist)
|
---|
2202 | :value-type :poly-list)
|
---|
2203 | (minimization plist)))
|
---|
2204 |
|
---|
2205 | (defmfun $poly_normalize_list (plist vars)
|
---|
2206 | (with-parsed-polynomials ((vars) :poly-lists (plist)
|
---|
2207 | :value-type :poly-list)
|
---|
2208 | (poly-normalize-list *maxima-ring* plist)))
|
---|
2209 |
|
---|
2210 | (defmfun $poly_grobner (f vars)
|
---|
2211 | (with-parsed-polynomials ((vars) :poly-lists (f)
|
---|
2212 | :value-type :poly-list)
|
---|
2213 | (grobner *maxima-ring* (remzero f))))
|
---|
2214 |
|
---|
2215 | (defmfun $poly_reduced_grobner (f vars)
|
---|
2216 | (with-parsed-polynomials ((vars) :poly-lists (f)
|
---|
2217 | :value-type :poly-list)
|
---|
2218 | (reduced-grobner *maxima-ring* (remzero f))))
|
---|
2219 |
|
---|
2220 | (defmfun $poly_depends_p (p var mvars
|
---|
2221 | &aux (vars (coerce-maxima-list mvars))
|
---|
2222 | (pos (position var vars)))
|
---|
2223 | (if (null pos)
|
---|
2224 | (merror "~%Variable ~M not in the list of variables ~M." var mvars)
|
---|
2225 | (poly-depends-p (parse-poly p vars) pos)))
|
---|
2226 |
|
---|
2227 | (defmfun $poly_elimination_ideal (flist k vars)
|
---|
2228 | (with-parsed-polynomials ((vars) :poly-lists (flist)
|
---|
2229 | :value-type :poly-list)
|
---|
2230 | (elimination-ideal *maxima-ring* flist k nil 0)))
|
---|
2231 |
|
---|
2232 | (defmfun $poly_colon_ideal (f g vars)
|
---|
2233 | (with-parsed-polynomials ((vars) :poly-lists (f g) :value-type :poly-list)
|
---|
2234 | (colon-ideal *maxima-ring* f g nil)))
|
---|
2235 |
|
---|
2236 | (defmfun $poly_ideal_intersection (f g vars)
|
---|
2237 | (with-parsed-polynomials ((vars) :poly-lists (f g) :value-type :poly-list)
|
---|
2238 | (ideal-intersection *maxima-ring* f g nil)))
|
---|
2239 |
|
---|
2240 | (defmfun $poly_lcm (f g vars)
|
---|
2241 | (with-parsed-polynomials ((vars) :polynomials (f g) :value-type :polynomial)
|
---|
2242 | (poly-lcm *maxima-ring* f g)))
|
---|
2243 |
|
---|
2244 | (defmfun $poly_gcd (f g vars)
|
---|
2245 | ($first ($divide (m* f g) ($poly_lcm f g vars))))
|
---|
2246 |
|
---|
2247 | (defmfun $poly_grobner_equal (g1 g2 vars)
|
---|
2248 | (with-parsed-polynomials ((vars) :poly-lists (g1 g2))
|
---|
2249 | (grobner-equal *maxima-ring* g1 g2)))
|
---|
2250 |
|
---|
2251 | (defmfun $poly_grobner_subsetp (g1 g2 vars)
|
---|
2252 | (with-parsed-polynomials ((vars) :poly-lists (g1 g2))
|
---|
2253 | (grobner-subsetp *maxima-ring* g1 g2)))
|
---|
2254 |
|
---|
2255 | (defmfun $poly_grobner_member (p g vars)
|
---|
2256 | (with-parsed-polynomials ((vars) :polynomials (p) :poly-lists (g))
|
---|
2257 | (grobner-member *maxima-ring* p g)))
|
---|
2258 |
|
---|
2259 | (defmfun $poly_ideal_saturation1 (f p vars)
|
---|
2260 | (with-parsed-polynomials ((vars) :poly-lists (f) :polynomials (p)
|
---|
2261 | :value-type :poly-list)
|
---|
2262 | (ideal-saturation-1 *maxima-ring* f p 0)))
|
---|
2263 |
|
---|
2264 | (defmfun $poly_saturation_extension (f plist vars new-vars)
|
---|
2265 | (with-parsed-polynomials ((vars new-vars)
|
---|
2266 | :poly-lists (f plist)
|
---|
2267 | :value-type :poly-list)
|
---|
2268 | (saturation-extension *maxima-ring* f plist)))
|
---|
2269 |
|
---|
2270 | (defmfun $poly_polysaturation_extension (f plist vars new-vars)
|
---|
2271 | (with-parsed-polynomials ((vars new-vars)
|
---|
2272 | :poly-lists (f plist)
|
---|
2273 | :value-type :poly-list)
|
---|
2274 | (polysaturation-extension *maxima-ring* f plist)))
|
---|
2275 |
|
---|
2276 | (defmfun $poly_ideal_polysaturation1 (f plist vars)
|
---|
2277 | (with-parsed-polynomials ((vars) :poly-lists (f plist)
|
---|
2278 | :value-type :poly-list)
|
---|
2279 | (ideal-polysaturation-1 *maxima-ring* f plist 0 nil)))
|
---|
2280 |
|
---|
2281 | (defmfun $poly_ideal_saturation (f g vars)
|
---|
2282 | (with-parsed-polynomials ((vars) :poly-lists (f g)
|
---|
2283 | :value-type :poly-list)
|
---|
2284 | (ideal-saturation *maxima-ring* f g 0 nil)))
|
---|
2285 |
|
---|
2286 | (defmfun $poly_ideal_polysaturation (f ideal-list vars)
|
---|
2287 | (with-parsed-polynomials ((vars) :poly-lists (f)
|
---|
2288 | :poly-list-lists (ideal-list)
|
---|
2289 | :value-type :poly-list)
|
---|
2290 | (ideal-polysaturation *maxima-ring* f ideal-list 0 nil)))
|
---|
2291 |
|
---|
2292 | (defmfun $poly_lt (f vars)
|
---|
2293 | (with-parsed-polynomials ((vars) :polynomials (f) :value-type :polynomial)
|
---|
2294 | (make-poly-from-termlist (list (poly-lt f)))))
|
---|
2295 |
|
---|
2296 | (defmfun $poly_lm (f vars)
|
---|
2297 | (with-parsed-polynomials ((vars) :polynomials (f) :value-type :polynomial)
|
---|
2298 | (make-poly-from-termlist (list (make-term (poly-lm f) (funcall (ring-unit *maxima-ring*)))))))
|
---|
2299 |
|
---|