close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/grobner.lisp@ 55

Last change on this file since 55 was 54, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 58.3 KB
RevLine 
[1]1;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
[4]4;;; Copyright (C) 1999, 2002, 2009 Marek Rychlik <rychlik@u.arizona.edu>
[1]5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(in-package :maxima)
23
24(macsyma-module cgb-maxima)
25
26(eval-when
27 #+gcl (load eval)
28 #-gcl (:load-toplevel :execute)
29 (format t "~&Loading maxima-grobner ~a ~a~%"
[47]30 "$Revision: 2.0 $" "$Date: 2015/06/02 0:34:17 $"))
[1]31
32;;FUNCTS is loaded because it contains the definition of LCM
33($load "functs")
34
35
36
37
38
39
40;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
41;;
42;; Global switches
43;; (Can be used in Maxima just fine)
44;;
45;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
46
47(defmvar $poly_monomial_order '$lex
48 "This switch controls which monomial order is used in polynomial
49and Grobner basis calculations. If not set, LEX will be used")
50
51(defmvar $poly_coefficient_ring '$expression_ring
52 "This switch indicates the coefficient ring of the polynomials
53that will be used in grobner calculations. If not set, Maxima's
54general expression ring will be used. This variable may be set
55to RING_OF_INTEGERS if desired.")
56
57(defmvar $poly_primary_elimination_order nil
58 "Name of the default order for eliminated variables in elimination-based functions.
59If not set, LEX will be used.")
60
61(defmvar $poly_secondary_elimination_order nil
62 "Name of the default order for kept variables in elimination-based functions.
63If not set, LEX will be used.")
64
65(defmvar $poly_elimination_order nil
66 "Name of the default elimination order used in elimination calculations.
67If set, it overrides the settings in variables POLY_PRIMARY_ELIMINATION_ORDER
68and SECONDARY_ELIMINATION_ORDER. The user must ensure that this is a true
69elimination order valid for the number of eliminated variables.")
70
71(defmvar $poly_return_term_list nil
72 "If set to T, all functions in this package will return each polynomial as a
73list of terms in the current monomial order rather than a Maxima general expression.")
74
75(defmvar $poly_grobner_debug nil
76 "If set to TRUE, produce debugging and tracing output.")
77
78(defmvar $poly_grobner_algorithm '$buchberger
79 "The name of the algorithm used to find grobner bases.")
80
81(defmvar $poly_top_reduction_only nil
82 "If not FALSE, use top reduction only whenever possible.
83Top reduction means that division algorithm stops after the first reduction.")
84
85
86
87;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
88;;
89;; Coefficient ring operations
90;;
91;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
92;;
93;; These are ALL operations that are performed on the coefficients by
94;; the package, and thus the coefficient ring can be changed by merely
95;; redefining these operations.
96;;
97;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
98
99(defstruct (ring)
100 (parse #'identity :type function)
101 (unit #'identity :type function)
102 (zerop #'identity :type function)
103 (add #'identity :type function)
104 (sub #'identity :type function)
105 (uminus #'identity :type function)
106 (mul #'identity :type function)
107 (div #'identity :type function)
108 (lcm #'identity :type function)
109 (ezgcd #'identity :type function)
110 (gcd #'identity :type function))
111
112(defparameter *ring-of-integers*
113 (make-ring
114 :parse #'identity
115 :unit #'(lambda () 1)
116 :zerop #'zerop
117 :add #'+
118 :sub #'-
119 :uminus #'-
120 :mul #'*
121 :div #'/
122 :lcm #'lcm
123 :ezgcd #'(lambda (x y &aux (c (gcd x y))) (values c (/ x c) (/ y c)))
124 :gcd #'gcd)
125 "The ring of integers.")
126
127
128
129;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
130;;
131;; This is how we perform operations on coefficients
132;; using Maxima functions.
133;;
134;; Functions and macros dealing with internal representation structure
135;;
136;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
137
138
139
140
141;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
142;;
143;; Low-level polynomial arithmetic done on
144;; lists of terms
145;;
146;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
147
148(defmacro termlist-lt (p) `(car ,p))
149(defun termlist-lm (p) (term-monom (termlist-lt p)))
150(defun termlist-lc (p) (term-coeff (termlist-lt p)))
151
152(define-modify-macro scalar-mul (c) coeff-mul)
153
154(defun scalar-times-termlist (ring c p)
155 "Multiply scalar C by a polynomial P. This function works
156even if there are divisors of 0."
157 (mapcan
158 #'(lambda (term)
159 (let ((c1 (funcall (ring-mul ring) c (term-coeff term))))
160 (unless (funcall (ring-zerop ring) c1)
161 (list (make-term (term-monom term) c1)))))
162 p))
163
164
165(defun term-mul (ring term1 term2)
166 "Returns (LIST TERM) wheter TERM is the product of the terms TERM1 TERM2,
167or NIL when the product is 0. This definition takes care of divisors of 0
168in the coefficient ring."
169 (let ((c (funcall (ring-mul ring) (term-coeff term1) (term-coeff term2))))
170 (unless (funcall (ring-zerop ring) c)
171 (list (make-term (monom-mul (term-monom term1) (term-monom term2)) c)))))
172
173(defun term-times-termlist (ring term f)
174 (declare (type ring ring))
175 (mapcan #'(lambda (term-f) (term-mul ring term term-f)) f))
176
177(defun termlist-times-term (ring f term)
178 (mapcan #'(lambda (term-f) (term-mul ring term-f term)) f))
179
180(defun monom-times-term (m term)
181 (make-term (monom-mul m (term-monom term)) (term-coeff term)))
182
183(defun monom-times-termlist (m f)
184 (cond
185 ((null f) nil)
186 (t
187 (mapcar #'(lambda (x) (monom-times-term m x)) f))))
188
189(defun termlist-uminus (ring f)
190 (mapcar #'(lambda (x)
191 (make-term (term-monom x) (funcall (ring-uminus ring) (term-coeff x))))
192 f))
193
194(defun termlist-add (ring p q)
195 (declare (type list p q))
196 (do (r)
197 ((cond
198 ((endp p)
199 (setf r (revappend r q)) t)
200 ((endp q)
201 (setf r (revappend r p)) t)
202 (t
203 (multiple-value-bind
204 (lm-greater lm-equal)
205 (monomial-order (termlist-lm p) (termlist-lm q))
206 (cond
207 (lm-equal
208 (let ((s (funcall (ring-add ring) (termlist-lc p) (termlist-lc q))))
209 (unless (funcall (ring-zerop ring) s) ;check for cancellation
210 (setf r (cons (make-term (termlist-lm p) s) r)))
211 (setf p (cdr p) q (cdr q))))
212 (lm-greater
213 (setf r (cons (car p) r)
214 p (cdr p)))
215 (t (setf r (cons (car q) r)
216 q (cdr q)))))
217 nil))
218 r)))
219
220(defun termlist-sub (ring p q)
221 (declare (type list p q))
222 (do (r)
223 ((cond
224 ((endp p)
225 (setf r (revappend r (termlist-uminus ring q)))
226 t)
227 ((endp q)
228 (setf r (revappend r p))
229 t)
230 (t
231 (multiple-value-bind
232 (mgreater mequal)
233 (monomial-order (termlist-lm p) (termlist-lm q))
234 (cond
235 (mequal
236 (let ((s (funcall (ring-sub ring) (termlist-lc p) (termlist-lc q))))
237 (unless (funcall (ring-zerop ring) s) ;check for cancellation
238 (setf r (cons (make-term (termlist-lm p) s) r)))
239 (setf p (cdr p) q (cdr q))))
240 (mgreater
241 (setf r (cons (car p) r)
242 p (cdr p)))
243 (t (setf r (cons (make-term (termlist-lm q) (funcall (ring-uminus ring) (termlist-lc q))) r)
244 q (cdr q)))))
245 nil))
246 r)))
247
248;; Multiplication of polynomials
249;; Non-destructive version
250(defun termlist-mul (ring p q)
251 (cond ((or (endp p) (endp q)) nil) ;p or q is 0 (represented by NIL)
252 ;; If p=p0+p1 and q=q0+q1 then pq=p0q0+p0q1+p1q
253 ((endp (cdr p))
254 (term-times-termlist ring (car p) q))
255 ((endp (cdr q))
256 (termlist-times-term ring p (car q)))
257 (t
258 (let ((head (term-mul ring (termlist-lt p) (termlist-lt q)))
259 (tail (termlist-add ring (term-times-termlist ring (car p) (cdr q))
260 (termlist-mul ring (cdr p) q))))
261 (cond ((null head) tail)
262 ((null tail) head)
263 (t (nconc head tail)))))))
264
265(defun termlist-unit (ring dimension)
266 (declare (fixnum dimension))
267 (list (make-term (make-monom dimension :initial-element 0)
268 (funcall (ring-unit ring)))))
269
270(defun termlist-expt (ring poly n &aux (dim (monom-dimension (termlist-lm poly))))
271 (declare (type fixnum n dim))
272 (cond
273 ((minusp n) (error "termlist-expt: Negative exponent."))
274 ((endp poly) (if (zerop n) (termlist-unit ring dim) nil))
275 (t
276 (do ((k 1 (ash k 1))
277 (q poly (termlist-mul ring q q)) ;keep squaring
278 (p (termlist-unit ring dim) (if (not (zerop (logand k n))) (termlist-mul ring p q) p)))
279 ((> k n) p)
280 (declare (fixnum k))))))
281
282
283
284
285
286
287;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
288;;
289;; Debugging/tracing
290;;
291;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
292(defmacro debug-cgb (&rest args)
293 `(when $poly_grobner_debug (format *terminal-io* ,@args)))
294
295;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
296;;
297;; An implementation of Grobner basis
298;;
299;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
300
301(defun spoly (ring f g)
302 "It yields the S-polynomial of polynomials F and G."
303 (declare (type poly f g))
304 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
305 (mf (monom-div lcm (poly-lm f)))
306 (mg (monom-div lcm (poly-lm g))))
307 (declare (type monom mf mg))
308 (multiple-value-bind (c cf cg)
309 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
310 (declare (ignore c))
311 (poly-sub
312 ring
313 (scalar-times-poly ring cg (monom-times-poly mf f))
314 (scalar-times-poly ring cf (monom-times-poly mg g))))))
315
316
317(defun poly-primitive-part (ring p)
318 "Divide polynomial P with integer coefficients by gcd of its
319coefficients and return the result."
320 (declare (type poly p))
321 (if (poly-zerop p)
322 (values p 1)
323 (let ((c (poly-content ring p)))
324 (values (make-poly-from-termlist (mapcar
325 #'(lambda (x)
326 (make-term (term-monom x)
327 (funcall (ring-div ring) (term-coeff x) c)))
328 (poly-termlist p))
329 (poly-sugar p))
330 c))))
331
332(defun poly-content (ring p)
333 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
334to compute the greatest common divisor."
335 (declare (type poly p))
336 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
337
338
339
340;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
341;;
342;; An implementation of the division algorithm
343;;
344;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
345
346(defun grobner-op (ring c1 c2 m f g)
347 "Returns C2*F-C1*M*G, where F and G are polynomials M is a monomial.
[42]348Assume that the leading terms will cancel."
[1]349 #+grobner-check(funcall (ring-zerop ring)
[45]350 (funcall (ring-sub ring)
351 (funcall (ring-mul ring) c2 (poly-lc f))
[1]352 (funcall (ring-mul ring) c1 (poly-lc g))))
353 #+grobner-check(monom-equal-p (poly-lm f) (monom-mul m (poly-lm g)))
354 ;; Note that we can drop the leading terms of f ang g
355 (poly-sub ring
356 (scalar-times-poly-1 ring c2 f)
357 (scalar-times-poly-1 ring c1 (monom-times-poly m g))))
358
359(defun poly-pseudo-divide (ring f fl)
360 "Pseudo-divide a polynomial F by the list of polynomials FL. Return
361multiple values. The first value is a list of quotients A. The second
362value is the remainder R. The third argument is a scalar coefficient
363C, such that C*F can be divided by FL within the ring of coefficients,
364which is not necessarily a field. Finally, the fourth value is an
365integer count of the number of reductions performed. The resulting
366objects satisfy the equation: C*F= sum A[i]*FL[i] + R."
367 (declare (type poly f) (list fl))
368 (do ((r (make-poly-zero))
369 (c (funcall (ring-unit ring)))
370 (a (make-list (length fl) :initial-element (make-poly-zero)))
371 (division-count 0)
372 (p f))
373 ((poly-zerop p)
374 (debug-cgb "~&~3T~d reduction~:p" division-count)
375 (when (poly-zerop r) (debug-cgb " ---> 0"))
376 (values (mapcar #'poly-nreverse a) (poly-nreverse r) c division-count))
377 (declare (fixnum division-count))
378 (do ((fl fl (rest fl)) ;scan list of divisors
379 (b a (rest b)))
380 ((cond
381 ((endp fl) ;no division occurred
382 (push (poly-lt p) (poly-termlist r)) ;move lt(p) to remainder
383 (setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
384 (pop (poly-termlist p)) ;remove lt(p) from p
385 t)
386 ((monom-divides-p (poly-lm (car fl)) (poly-lm p)) ;division occurred
387 (incf division-count)
388 (multiple-value-bind (gcd c1 c2)
389 (funcall (ring-ezgcd ring) (poly-lc (car fl)) (poly-lc p))
390 (declare (ignore gcd))
391 (let ((m (monom-div (poly-lm p) (poly-lm (car fl)))))
392 ;; Multiply the equation c*f=sum ai*fi+r+p by c1.
393 (mapl #'(lambda (x)
394 (setf (car x) (scalar-times-poly ring c1 (car x))))
395 a)
396 (setf r (scalar-times-poly ring c1 r)
397 c (funcall (ring-mul ring) c c1)
398 p (grobner-op ring c2 c1 m p (car fl)))
399 (push (make-term m c2) (poly-termlist (car b))))
400 t)))))))
401
402(defun poly-exact-divide (ring f g)
403 "Divide a polynomial F by another polynomial G. Assume that exact division
404with no remainder is possible. Returns the quotient."
405 (declare (type poly f g))
406 (multiple-value-bind (quot rem coeff division-count)
407 (poly-pseudo-divide ring f (list g))
408 (declare (ignore division-count coeff)
409 (list quot)
410 (type poly rem)
411 (type fixnum division-count))
412 (unless (poly-zerop rem) (error "Exact division failed."))
413 (car quot)))
414
415
416
417;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
418;;
419;; An implementation of the normal form
420;;
421;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
422
423(defun normal-form-step (ring fl p r c division-count
424 &aux (g (find (poly-lm p) fl
425 :test #'monom-divisible-by-p
426 :key #'poly-lm)))
427 (cond
428 (g ;division possible
429 (incf division-count)
[25]430 (multiple-value-bind (gcd cg cp)
[1]431 (funcall (ring-ezgcd ring) (poly-lc g) (poly-lc p))
432 (declare (ignore gcd))
433 (let ((m (monom-div (poly-lm p) (poly-lm g))))
434 ;; Multiply the equation c*f=sum ai*fi+r+p by cg.
435 (setf r (scalar-times-poly ring cg r)
436 c (funcall (ring-mul ring) c cg)
437 ;; p := cg*p-cp*m*g
438 p (grobner-op ring cp cg m p g))))
439 (debug-cgb "/"))
440 (t ;no division possible
441 (push (poly-lt p) (poly-termlist r)) ;move lt(p) to remainder
442 (setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
443 (pop (poly-termlist p)) ;remove lt(p) from p
444 (debug-cgb "+")))
445 (values p r c division-count))
446
447;; Merge it sometime with poly-pseudo-divide
448(defun normal-form (ring f fl &optional (top-reduction-only $poly_top_reduction_only))
449 ;; Loop invariant: c*f0=sum ai*fi+r+f, where f0 is the initial value of f
450 #+grobner-check(when (null fl) (warn "normal-form: empty divisor list."))
451 (do ((r (make-poly-zero))
452 (c (funcall (ring-unit ring)))
453 (division-count 0))
454 ((or (poly-zerop f)
455 ;;(endp fl)
456 (and top-reduction-only (not (poly-zerop r))))
457 (progn
458 (debug-cgb "~&~3T~d reduction~:p" division-count)
459 (when (poly-zerop r)
460 (debug-cgb " ---> 0")))
461 (setf (poly-termlist f) (nreconc (poly-termlist r) (poly-termlist f)))
462 (values f c division-count))
463 (declare (fixnum division-count)
464 (type poly r))
465 (multiple-value-setq (f r c division-count)
466 (normal-form-step ring fl f r c division-count))))
467
468
469
470;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
471;;
472;; These are provided mostly for debugging purposes To enable
473;; verification of grobner bases with BUCHBERGER-CRITERION, do
474;; (pushnew :grobner-check *features*) and compile/load this file.
475;; With this feature, the calculations will slow down CONSIDERABLY.
476;;
477;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
478
479(defun buchberger-criterion (ring g)
480 "Returns T if G is a Grobner basis, by using the Buchberger
481criterion: for every two polynomials h1 and h2 in G the S-polynomial
482S(h1,h2) reduces to 0 modulo G."
483 (every
484 #'poly-zerop
485 (makelist (normal-form ring (spoly ring (elt g i) (elt g j)) g nil)
486 (i 0 (- (length g) 2))
487 (j (1+ i) (1- (length g))))))
488
489(defun grobner-test (ring g f)
490 "Test whether G is a Grobner basis and F is contained in G. Return T
491upon success and NIL otherwise."
492 (debug-cgb "~&GROBNER CHECK: ")
493 (let (($poly_grobner_debug nil)
494 (stat1 (buchberger-criterion ring g))
495 (stat2
496 (every #'poly-zerop
497 (makelist (normal-form ring (copy-tree (elt f i)) g nil)
498 (i 0 (1- (length f)))))))
499 (unless stat1 (error "~&Buchberger criterion failed."))
500 (unless stat2
501 (error "~&Original polys not in ideal spanned by Grobner.")))
502 (debug-cgb "~&GROBNER CHECK END")
503 t)
504
505
506
507;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
508;;
509;; Pair queue implementation
510;;
511;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
512
513(defun sugar-pair-key (p q &aux (lcm (monom-lcm (poly-lm p) (poly-lm q)))
514 (d (monom-sugar lcm)))
515 "Returns list (S LCM-TOTAL-DEGREE) where S is the sugar of the S-polynomial of
516polynomials P and Q, and LCM-TOTAL-DEGREE is the degree of is LCM(LM(P),LM(Q))."
517 (declare (type poly p q) (type monom lcm) (type fixnum d))
518 (cons (max
519 (+ (- d (monom-sugar (poly-lm p))) (poly-sugar p))
520 (+ (- d (monom-sugar (poly-lm q))) (poly-sugar q)))
521 lcm))
522
523(defstruct (pair
524 (:constructor make-pair (first second
525 &aux
526 (sugar (car (sugar-pair-key first second)))
527 (division-data nil))))
528 (first nil :type poly)
529 (second nil :type poly)
530 (sugar 0 :type fixnum)
531 (division-data nil :type list))
532
533;;(defun pair-sugar (pair &aux (p (pair-first pair)) (q (pair-second pair)))
534;; (car (sugar-pair-key p q)))
535
536(defun sugar-order (x y)
537 "Pair order based on sugar, ties broken by normal strategy."
538 (declare (type cons x y))
539 (or (< (car x) (car y))
540 (and (= (car x) (car y))
541 (< (monom-total-degree (cdr x))
542 (monom-total-degree (cdr y))))))
543
544(defvar *pair-key-function* #'sugar-pair-key
545 "Function that, given two polynomials as argument, computed the key
546in the pair queue.")
547
548(defvar *pair-order* #'sugar-order
549 "Function that orders the keys of pairs.")
550
551(defun make-pair-queue ()
552 "Constructs a priority queue for critical pairs."
553 (make-priority-queue
554 :element-type 'pair
555 :element-key #'(lambda (pair) (funcall *pair-key-function* (pair-first pair) (pair-second pair)))
556 :test *pair-order*))
557
558(defun pair-queue-initialize (pq f start
559 &aux
560 (s (1- (length f)))
561 (b (nconc (makelist (make-pair (elt f i) (elt f j))
562 (i 0 (1- start)) (j start s))
563 (makelist (make-pair (elt f i) (elt f j))
564 (i start (1- s)) (j (1+ i) s)))))
565 "Initializes the priority for critical pairs. F is the initial list of polynomials.
566START is the first position beyond the elements which form a partial
567grobner basis, i.e. satisfy the Buchberger criterion."
568 (declare (type priority-queue pq) (type fixnum start))
569 (dolist (pair b pq)
570 (priority-queue-insert pq pair)))
571
572(defun pair-queue-insert (b pair)
573 (priority-queue-insert b pair))
574
575(defun pair-queue-remove (b)
576 (priority-queue-remove b))
577
578(defun pair-queue-size (b)
579 (priority-queue-size b))
580
581(defun pair-queue-empty-p (b)
582 (priority-queue-empty-p b))
583
584;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
585;;
586;; Buchberger Algorithm Implementation
587;;
588;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
589
590(defun buchberger (ring f start &optional (top-reduction-only $poly_top_reduction_only))
591 "An implementation of the Buchberger algorithm. Return Grobner basis
592of the ideal generated by the polynomial list F. Polynomials 0 to
593START-1 are assumed to be a Grobner basis already, so that certain
594critical pairs will not be examined. If TOP-REDUCTION-ONLY set, top
595reduction will be preformed. This function assumes that all polynomials
596in F are non-zero."
597 (declare (type fixnum start))
598 (when (endp f) (return-from buchberger f)) ;cut startup costs
599 (debug-cgb "~&GROBNER BASIS - BUCHBERGER ALGORITHM")
600 (when (plusp start) (debug-cgb "~&INCREMENTAL:~d done" start))
601 #+grobner-check (when (plusp start)
602 (grobner-test ring (subseq f 0 start) (subseq f 0 start)))
603 ;;Initialize critical pairs
604 (let ((b (pair-queue-initialize (make-pair-queue)
605 f start))
606 (b-done (make-hash-table :test #'equal)))
607 (declare (type priority-queue b) (type hash-table b-done))
608 (dotimes (i (1- start))
609 (do ((j (1+ i) (1+ j))) ((>= j start))
610 (setf (gethash (list (elt f i) (elt f j)) b-done) t)))
611 (do ()
612 ((pair-queue-empty-p b)
613 #+grobner-check(grobner-test ring f f)
614 (debug-cgb "~&GROBNER END")
615 f)
616 (let ((pair (pair-queue-remove b)))
617 (declare (type pair pair))
618 (cond
619 ((criterion-1 pair) nil)
620 ((criterion-2 pair b-done f) nil)
621 (t
622 (let ((sp (normal-form ring (spoly ring (pair-first pair)
623 (pair-second pair))
624 f top-reduction-only)))
625 (declare (type poly sp))
626 (cond
627 ((poly-zerop sp)
628 nil)
629 (t
630 (setf sp (poly-primitive-part ring sp)
631 f (nconc f (list sp)))
632 ;; Add new critical pairs
633 (dolist (h f)
634 (pair-queue-insert b (make-pair h sp)))
635 (debug-cgb "~&Sugar: ~d Polynomials: ~d; Pairs left: ~d; Pairs done: ~d;"
636 (pair-sugar pair) (length f) (pair-queue-size b)
637 (hash-table-count b-done)))))))
638 (setf (gethash (list (pair-first pair) (pair-second pair)) b-done)
639 t)))))
640
641(defun parallel-buchberger (ring f start &optional (top-reduction-only $poly_top_reduction_only))
642 "An implementation of the Buchberger algorithm. Return Grobner basis
643of the ideal generated by the polynomial list F. Polynomials 0 to
644START-1 are assumed to be a Grobner basis already, so that certain
645critical pairs will not be examined. If TOP-REDUCTION-ONLY set, top
646reduction will be preformed."
647 (declare (ignore top-reduction-only)
648 (type fixnum start))
649 (when (endp f) (return-from parallel-buchberger f)) ;cut startup costs
650 (debug-cgb "~&GROBNER BASIS - PARALLEL-BUCHBERGER ALGORITHM")
651 (when (plusp start) (debug-cgb "~&INCREMENTAL:~d done" start))
652 #+grobner-check (when (plusp start)
653 (grobner-test ring (subseq f 0 start) (subseq f 0 start)))
654 ;;Initialize critical pairs
655 (let ((b (pair-queue-initialize (make-pair-queue) f start))
656 (b-done (make-hash-table :test #'equal)))
657 (declare (type priority-queue b)
658 (type hash-table b-done))
659 (dotimes (i (1- start))
660 (do ((j (1+ i) (1+ j))) ((>= j start))
661 (declare (type fixnum j))
662 (setf (gethash (list (elt f i) (elt f j)) b-done) t)))
663 (do ()
664 ((pair-queue-empty-p b)
665 #+grobner-check(grobner-test ring f f)
666 (debug-cgb "~&GROBNER END")
667 f)
668 (let ((pair (pair-queue-remove b)))
669 (when (null (pair-division-data pair))
670 (setf (pair-division-data pair) (list (spoly ring
671 (pair-first pair)
672 (pair-second pair))
673 (make-poly-zero)
674 (funcall (ring-unit ring))
675 0)))
676 (cond
677 ((criterion-1 pair) nil)
678 ((criterion-2 pair b-done f) nil)
679 (t
680 (let* ((dd (pair-division-data pair))
681 (p (first dd))
682 (sp (second dd))
683 (c (third dd))
684 (division-count (fourth dd)))
685 (cond
686 ((poly-zerop p) ;normal form completed
687 (debug-cgb "~&~3T~d reduction~:p" division-count)
688 (cond
689 ((poly-zerop sp)
690 (debug-cgb " ---> 0")
691 nil)
692 (t
693 (setf sp (poly-nreverse sp)
694 sp (poly-primitive-part ring sp)
695 f (nconc f (list sp)))
696 ;; Add new critical pairs
697 (dolist (h f)
698 (pair-queue-insert b (make-pair h sp)))
699 (debug-cgb "~&Sugar: ~d Polynomials: ~d; Pairs left: ~d; Pairs done: ~d;"
700 (pair-sugar pair) (length f) (pair-queue-size b)
701 (hash-table-count b-done))))
702 (setf (gethash (list (pair-first pair) (pair-second pair))
703 b-done) t))
704 (t ;normal form not complete
705 (do ()
706 ((cond
707 ((> (poly-sugar sp) (pair-sugar pair))
708 (debug-cgb "(~a)?" (poly-sugar sp))
709 t)
710 ((poly-zerop p)
711 (debug-cgb ".")
712 t)
713 (t nil))
714 (setf (first dd) p
715 (second dd) sp
716 (third dd) c
717 (fourth dd) division-count
718 (pair-sugar pair) (poly-sugar sp))
719 (pair-queue-insert b pair))
720 (multiple-value-setq (p sp c division-count)
721 (normal-form-step ring f p sp c division-count))))))))))))
722
723;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
724;;
725;; Grobner Criteria
726;;
727;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
728
729(defun criterion-1 (pair)
730 "Returns T if the leading monomials of the two polynomials
731in G pointed to by the integers in PAIR have disjoint (relatively prime)
732monomials. This test is known as the first Buchberger criterion."
733 (declare (type pair pair))
734 (let ((f (pair-first pair))
735 (g (pair-second pair)))
736 (when (monom-rel-prime-p (poly-lm f) (poly-lm g))
737 (debug-cgb ":1")
738 (return-from criterion-1 t))))
739
740(defun criterion-2 (pair b-done partial-basis
741 &aux (f (pair-first pair)) (g (pair-second pair))
742 (place :before))
743 "Returns T if the leading monomial of some element P of
744PARTIAL-BASIS divides the LCM of the leading monomials of the two
745polynomials in the polynomial list PARTIAL-BASIS, and P paired with
746each of the polynomials pointed to by the the PAIR has already been
747treated, as indicated by the absence in the hash table B-done."
748 (declare (type pair pair) (type hash-table b-done)
749 (type poly f g))
750 ;; In the code below we assume that pairs are ordered as follows:
751 ;; if PAIR is (I J) then I appears before J in the PARTIAL-BASIS.
752 ;; We traverse the list PARTIAL-BASIS and keep track of where we
753 ;; are, so that we can produce the pairs in the correct order
754 ;; when we check whether they have been processed, i.e they
755 ;; appear in the hash table B-done
756 (dolist (h partial-basis nil)
757 (cond
758 ((eq h f)
759 #+grobner-check(assert (eq place :before))
760 (setf place :in-the-middle))
761 ((eq h g)
762 #+grobner-check(assert (eq place :in-the-middle))
763 (setf place :after))
764 ((and (monom-divides-monom-lcm-p (poly-lm h) (poly-lm f) (poly-lm g))
765 (gethash (case place
766 (:before (list h f))
767 ((:in-the-middle :after) (list f h)))
768 b-done)
769 (gethash (case place
770 ((:before :in-the-middle) (list h g))
771 (:after (list g h)))
772 b-done))
773 (debug-cgb ":2")
774 (return-from criterion-2 t)))))
775
776
777
778;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
779;;
780;; An implementation of the algorithm of Gebauer and Moeller, as
781;; described in the book of Becker-Weispfenning, p. 232
782;;
783;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
784
785(defun gebauer-moeller (ring f start &optional (top-reduction-only $poly_top_reduction_only))
786 "Compute Grobner basis by using the algorithm of Gebauer and
787Moeller. This algorithm is described as BUCHBERGERNEW2 in the book by
788Becker-Weispfenning entitled ``Grobner Bases''. This function assumes
789that all polynomials in F are non-zero."
790 (declare (ignore top-reduction-only)
791 (type fixnum start))
792 (cond
793 ((endp f) (return-from gebauer-moeller nil))
794 ((endp (cdr f))
795 (return-from gebauer-moeller (list (poly-primitive-part ring (car f))))))
796 (debug-cgb "~&GROBNER BASIS - GEBAUER MOELLER ALGORITHM")
797 (when (plusp start) (debug-cgb "~&INCREMENTAL:~d done" start))
798 #+grobner-check (when (plusp start)
799 (grobner-test ring (subseq f 0 start) (subseq f 0 start)))
800 (let ((b (make-pair-queue))
801 (g (subseq f 0 start))
802 (f1 (subseq f start)))
803 (do () ((endp f1))
804 (multiple-value-setq (g b)
805 (gebauer-moeller-update g b (poly-primitive-part ring (pop f1)))))
806 (do () ((pair-queue-empty-p b))
807 (let* ((pair (pair-queue-remove b))
808 (g1 (pair-first pair))
809 (g2 (pair-second pair))
810 (h (normal-form ring (spoly ring g1 g2)
811 g
812 nil #| Always fully reduce! |#
813 )))
814 (unless (poly-zerop h)
815 (setf h (poly-primitive-part ring h))
816 (multiple-value-setq (g b)
817 (gebauer-moeller-update g b h))
818 (debug-cgb "~&Sugar: ~d Polynomials: ~d; Pairs left: ~d~%"
819 (pair-sugar pair) (length g) (pair-queue-size b))
820 )))
821 #+grobner-check(grobner-test ring g f)
822 (debug-cgb "~&GROBNER END")
823 g))
824
825(defun gebauer-moeller-update (g b h
826 &aux
827 c d e
828 (b-new (make-pair-queue))
829 g-new)
830 "An implementation of the auxillary UPDATE algorithm used by the
831Gebauer-Moeller algorithm. G is a list of polynomials, B is a list of
832critical pairs and H is a new polynomial which possibly will be added
833to G. The naming conventions used are very close to the one used in
834the book of Becker-Weispfenning."
835 (declare
836 #+allegro (dynamic-extent b)
837 (type poly h)
838 (type priority-queue b))
839 (setf c g d nil)
840 (do () ((endp c))
841 (let ((g1 (pop c)))
842 (declare (type poly g1))
843 (when (or (monom-rel-prime-p (poly-lm h) (poly-lm g1))
844 (and
845 (notany #'(lambda (g2) (monom-lcm-divides-monom-lcm-p
846 (poly-lm h) (poly-lm g2)
847 (poly-lm h) (poly-lm g1)))
848 c)
849 (notany #'(lambda (g2) (monom-lcm-divides-monom-lcm-p
850 (poly-lm h) (poly-lm g2)
851 (poly-lm h) (poly-lm g1)))
852 d)))
853 (push g1 d))))
854 (setf e nil)
855 (do () ((endp d))
856 (let ((g1 (pop d)))
857 (declare (type poly g1))
858 (unless (monom-rel-prime-p (poly-lm h) (poly-lm g1))
859 (push g1 e))))
860 (do () ((pair-queue-empty-p b))
861 (let* ((pair (pair-queue-remove b))
862 (g1 (pair-first pair))
863 (g2 (pair-second pair)))
864 (declare (type pair pair)
865 (type poly g1 g2))
866 (when (or (not (monom-divides-monom-lcm-p
867 (poly-lm h)
868 (poly-lm g1) (poly-lm g2)))
869 (monom-lcm-equal-monom-lcm-p
870 (poly-lm g1) (poly-lm h)
871 (poly-lm g1) (poly-lm g2))
872 (monom-lcm-equal-monom-lcm-p
873 (poly-lm h) (poly-lm g2)
874 (poly-lm g1) (poly-lm g2)))
875 (pair-queue-insert b-new (make-pair g1 g2)))))
876 (dolist (g3 e)
877 (pair-queue-insert b-new (make-pair h g3)))
878 (setf g-new nil)
879 (do () ((endp g))
880 (let ((g1 (pop g)))
881 (declare (type poly g1))
882 (unless (monom-divides-p (poly-lm h) (poly-lm g1))
883 (push g1 g-new))))
884 (push h g-new)
885 (values g-new b-new))
886
887
888
889;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
890;;
891;; Standard postprocessing of Grobner bases
892;;
893;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
894
895(defun reduction (ring plist)
896 "Reduce a list of polynomials PLIST, so that non of the terms in any of
897the polynomials is divisible by a leading monomial of another
898polynomial. Return the reduced list."
899 (do ((q plist)
900 (found t))
901 ((not found)
902 (mapcar #'(lambda (x) (poly-primitive-part ring x)) q))
903 ;;Find p in Q such that p is reducible mod Q\{p}
904 (setf found nil)
905 (dolist (x q)
906 (let ((q1 (remove x q)))
907 (multiple-value-bind (h c div-count)
908 (normal-form ring x q1 nil #| not a top reduction! |# )
909 (declare (ignore c))
910 (unless (zerop div-count)
911 (setf found t q q1)
912 (unless (poly-zerop h)
913 (setf q (nconc q1 (list h))))
914 (return)))))))
915
916(defun minimization (p)
917 "Returns a sublist of the polynomial list P spanning the same
918monomial ideal as P but minimal, i.e. no leading monomial
919of a polynomial in the sublist divides the leading monomial
920of another polynomial."
921 (do ((q p)
922 (found t))
923 ((not found) q)
924 ;;Find p in Q such that lm(p) is in LM(Q\{p})
925 (setf found nil
926 q (dolist (x q q)
927 (let ((q1 (remove x q)))
928 (when (member-if #'(lambda (p) (monom-divides-p (poly-lm x) (poly-lm p))) q1)
929 (setf found t)
930 (return q1)))))))
931
932(defun poly-normalize (ring p &aux (c (poly-lc p)))
933 "Divide a polynomial by its leading coefficient. It assumes
934that the division is possible, which may not always be the
935case in rings which are not fields. The exact division operator
936is assumed to be provided by the RING structure of the
937COEFFICIENT-RING package."
938 (mapc #'(lambda (term)
939 (setf (term-coeff term) (funcall (ring-div ring) (term-coeff term) c)))
940 (poly-termlist p))
941 p)
942
943(defun poly-normalize-list (ring plist)
944 "Divide every polynomial in a list PLIST by its leading coefficient. "
945 (mapcar #'(lambda (x) (poly-normalize ring x)) plist))
946
947
948
949;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
950;;
951;; Algorithm and Pair heuristic selection
952;;
953;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
954
955(defun find-grobner-function (algorithm)
956 "Return a function which calculates Grobner basis, based on its
957names. Names currently used are either Lisp symbols, Maxima symbols or
958keywords."
959 (ecase algorithm
960 ((buchberger :buchberger $buchberger) #'buchberger)
961 ((parallel-buchberger :parallel-buchberger $parallel_buchberger) #'parallel-buchberger)
962 ((gebauer-moeller :gebauer_moeller $gebauer_moeller) #'gebauer-moeller)))
963
964(defun grobner (ring f &optional (start 0) (top-reduction-only nil))
965 ;;(setf F (sort F #'< :key #'sugar))
966 (funcall
967 (find-grobner-function $poly_grobner_algorithm)
968 ring f start top-reduction-only))
969
970(defun reduced-grobner (ring f &optional (start 0) (top-reduction-only $poly_top_reduction_only))
971 (reduction ring (grobner ring f start top-reduction-only)))
972
973(defun set-pair-heuristic (method)
974 "Sets up variables *PAIR-KEY-FUNCTION* and *PAIR-ORDER* used
975to determine the priority of critical pairs in the priority queue."
976 (ecase method
977 ((sugar :sugar $sugar)
978 (setf *pair-key-function* #'sugar-pair-key
979 *pair-order* #'sugar-order))
980; ((minimal-mock-spoly :minimal-mock-spoly $minimal_mock_spoly)
981; (setf *pair-key-function* #'mock-spoly
982; *pair-order* #'mock-spoly-order))
983 ((minimal-lcm :minimal-lcm $minimal_lcm)
984 (setf *pair-key-function* #'(lambda (p q)
985 (monom-lcm (poly-lm p) (poly-lm q)))
986 *pair-order* #'reverse-monomial-order))
987 ((minimal-total-degree :minimal-total-degree $minimal_total_degree)
988 (setf *pair-key-function* #'(lambda (p q)
989 (monom-total-degree
990 (monom-lcm (poly-lm p) (poly-lm q))))
991 *pair-order* #'<))
992 ((minimal-length :minimal-length $minimal_length)
993 (setf *pair-key-function* #'(lambda (p q)
994 (+ (poly-length p) (poly-length q)))
995 *pair-order* #'<))))
996
997
998
999;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1000;;
1001;; Operations in ideal theory
1002;;
1003;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1004
1005;; Does the term depend on variable K?
1006(defun term-depends-p (term k)
1007 "Return T if the term TERM depends on variable number K."
1008 (monom-depends-p (term-monom term) k))
1009
1010;; Does the polynomial P depend on variable K?
1011(defun poly-depends-p (p k)
1012 "Return T if the term polynomial P depends on variable number K."
1013 (some #'(lambda (term) (term-depends-p term k)) (poly-termlist p)))
1014
1015(defun ring-intersection (plist k)
1016 "This function assumes that polynomial list PLIST is a Grobner basis
1017and it calculates the intersection with the ring R[x[k+1],...,x[n]], i.e.
1018it discards polynomials which depend on variables x[0], x[1], ..., x[k]."
1019 (dotimes (i k plist)
1020 (setf plist
1021 (remove-if #'(lambda (p)
1022 (poly-depends-p p i))
1023 plist))))
1024
[21]1025(defun elimination-ideal (ring flist k
1026 &optional (top-reduction-only $poly_top_reduction_only) (start 0)
1027 &aux (*monomial-order*
1028 (or *elimination-order*
1029 (elimination-order k))))
1030 (ring-intersection (reduced-grobner ring flist start top-reduction-only) k))
1031
1032(defun colon-ideal (ring f g &optional (top-reduction-only $poly_top_reduction_only))
1033 "Returns the reduced Grobner basis of the colon ideal Id(F):Id(G),
1034where F and G are two lists of polynomials. The colon ideal I:J is
1035defined as the set of polynomials H such that for all polynomials W in
1036J the polynomial W*H belongs to I."
1037 (cond
1038 ((endp g)
1039 ;;Id(G) consists of 0 only so W*0=0 belongs to Id(F)
1040 (if (every #'poly-zerop f)
[1]1041 (error "First ideal must be non-zero.")
1042 (list (make-poly
1043 (list (make-term
1044 (make-monom (monom-dimension (poly-lm (find-if-not #'poly-zerop f)))
1045 :initial-element 0)
1046 (funcall (ring-unit ring))))))))
1047 ((endp (cdr g))
1048 (colon-ideal-1 ring f (car g) top-reduction-only))
1049 (t
1050 (ideal-intersection ring
1051 (colon-ideal-1 ring f (car g) top-reduction-only)
1052 (colon-ideal ring f (rest g) top-reduction-only)
1053 top-reduction-only))))
1054
1055(defun colon-ideal-1 (ring f g &optional (top-reduction-only $poly_top_reduction_only))
1056 "Returns the reduced Grobner basis of the colon ideal Id(F):Id({G}), where
1057F is a list of polynomials and G is a polynomial."
1058 (mapcar #'(lambda (x) (poly-exact-divide ring x g)) (ideal-intersection ring f (list g) top-reduction-only)))
1059
1060
1061(defun ideal-intersection (ring f g &optional (top-reduction-only $poly_top_reduction_only)
1062 &aux (*monomial-order* (or *elimination-order*
1063 #'elimination-order-1)))
1064 (mapcar #'poly-contract
1065 (ring-intersection
1066 (reduced-grobner
1067 ring
1068 (append (mapcar #'(lambda (p) (poly-extend p (make-monom 1 :initial-element 1))) f)
1069 (mapcar #'(lambda (p)
1070 (poly-append (poly-extend (poly-uminus ring p)
1071 (make-monom 1 :initial-element 1))
1072 (poly-extend p)))
1073 g))
1074 0
1075 top-reduction-only)
1076 1)))
1077
1078(defun poly-lcm (ring f g)
1079 "Return LCM (least common multiple) of two polynomials F and G.
1080The polynomials must be ordered according to monomial order PRED
1081and their coefficients must be compatible with the RING structure
1082defined in the COEFFICIENT-RING package."
1083 (cond
1084 ((poly-zerop f) f)
1085 ((poly-zerop g) g)
1086 ((and (endp (cdr (poly-termlist f))) (endp (cdr (poly-termlist g))))
1087 (let ((m (monom-lcm (poly-lm f) (poly-lm g))))
1088 (make-poly-from-termlist (list (make-term m (funcall (ring-lcm ring) (poly-lc f) (poly-lc g)))))))
1089 (t
1090 (multiple-value-bind (f f-cont)
1091 (poly-primitive-part ring f)
1092 (multiple-value-bind (g g-cont)
1093 (poly-primitive-part ring g)
1094 (scalar-times-poly
1095 ring
1096 (funcall (ring-lcm ring) f-cont g-cont)
1097 (poly-primitive-part ring (car (ideal-intersection ring (list f) (list g) nil)))))))))
1098
1099;; Do two Grobner bases yield the same ideal?
1100(defun grobner-equal (ring g1 g2)
1101 "Returns T if two lists of polynomials G1 and G2, assumed to be Grobner bases,
1102generate the same ideal, and NIL otherwise."
1103 (and (grobner-subsetp ring g1 g2) (grobner-subsetp ring g2 g1)))
1104
1105(defun grobner-subsetp (ring g1 g2)
1106 "Returns T if a list of polynomials G1 generates
1107an ideal contained in the ideal generated by a polynomial list G2,
1108both G1 and G2 assumed to be Grobner bases. Returns NIL otherwise."
1109 (every #'(lambda (p) (grobner-member ring p g2)) g1))
1110
1111(defun grobner-member (ring p g)
1112 "Returns T if a polynomial P belongs to the ideal generated by the
1113polynomial list G, which is assumed to be a Grobner basis. Returns NIL otherwise."
1114 (poly-zerop (normal-form ring p g nil)))
1115
1116;; Calculate F : p^inf
1117(defun ideal-saturation-1 (ring f p start &optional (top-reduction-only $poly_top_reduction_only)
1118 &aux (*monomial-order* (or *elimination-order*
1119 #'elimination-order-1)))
1120 "Returns the reduced Grobner basis of the saturation of the ideal
1121generated by a polynomial list F in the ideal generated by a single
1122polynomial P. The saturation ideal is defined as the set of
1123polynomials H such for some natural number n (* (EXPT P N) H) is in the ideal
1124F. Geometrically, over an algebraically closed field, this is the set
1125of polynomials in the ideal generated by F which do not identically
1126vanish on the variety of P."
1127 (mapcar
1128 #'poly-contract
1129 (ring-intersection
1130 (reduced-grobner
1131 ring
1132 (saturation-extension-1 ring f p)
1133 start top-reduction-only)
1134 1)))
1135
1136
1137
1138;; Calculate F : p1^inf : p2^inf : ... : ps^inf
1139(defun ideal-polysaturation-1 (ring f plist start &optional (top-reduction-only $poly_top_reduction_only))
1140 "Returns the reduced Grobner basis of the ideal obtained by a
1141sequence of successive saturations in the polynomials
1142of the polynomial list PLIST of the ideal generated by the
1143polynomial list F."
1144 (cond
1145 ((endp plist) (reduced-grobner ring f start top-reduction-only))
1146 (t (let ((g (ideal-saturation-1 ring f (car plist) start top-reduction-only)))
1147 (ideal-polysaturation-1 ring g (rest plist) (length g) top-reduction-only)))))
1148
1149(defun ideal-saturation (ring f g start &optional (top-reduction-only $poly_top_reduction_only)
1150 &aux
1151 (k (length g))
1152 (*monomial-order* (or *elimination-order*
1153 (elimination-order k))))
1154 "Returns the reduced Grobner basis of the saturation of the ideal
1155generated by a polynomial list F in the ideal generated a polynomial
1156list G. The saturation ideal is defined as the set of polynomials H
1157such for some natural number n and some P in the ideal generated by G
1158the polynomial P**N * H is in the ideal spanned by F. Geometrically,
1159over an algebraically closed field, this is the set of polynomials in
1160the ideal generated by F which do not identically vanish on the
1161variety of G."
1162 (mapcar
1163 #'(lambda (q) (poly-contract q k))
1164 (ring-intersection
1165 (reduced-grobner ring
1166 (polysaturation-extension ring f g)
1167 start
1168 top-reduction-only)
1169 k)))
1170
1171(defun ideal-polysaturation (ring f ideal-list start &optional (top-reduction-only $poly_top_reduction_only))
1172 "Returns the reduced Grobner basis of the ideal obtained by a
1173successive applications of IDEAL-SATURATION to F and lists of
1174polynomials in the list IDEAL-LIST."
1175 (cond
1176 ((endp ideal-list) f)
1177 (t (let ((h (ideal-saturation ring f (car ideal-list) start top-reduction-only)))
1178 (ideal-polysaturation ring h (rest ideal-list) (length h) top-reduction-only)))))
1179
1180
1181
1182;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1183;;
1184;; Set up the coefficients to be polynomials
1185;;
1186;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1187
1188;; (defun poly-ring (ring vars)
1189;; (make-ring
1190;; :parse #'(lambda (expr) (poly-eval ring expr vars))
1191;; :unit #'(lambda () (poly-unit ring (length vars)))
1192;; :zerop #'poly-zerop
1193;; :add #'(lambda (x y) (poly-add ring x y))
1194;; :sub #'(lambda (x y) (poly-sub ring x y))
1195;; :uminus #'(lambda (x) (poly-uminus ring x))
1196;; :mul #'(lambda (x y) (poly-mul ring x y))
1197;; :div #'(lambda (x y) (poly-exact-divide ring x y))
1198;; :lcm #'(lambda (x y) (poly-lcm ring x y))
1199;; :ezgcd #'(lambda (x y &aux (gcd (poly-gcd ring x y)))
1200;; (values gcd
1201;; (poly-exact-divide ring x gcd)
1202;; (poly-exact-divide ring y gcd)))
1203;; :gcd #'(lambda (x y) (poly-gcd x y))))
1204
1205
1206
1207;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1208;;
1209;; Conversion from internal to infix form
1210;;
1211;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1212
1213(defun coerce-to-infix (poly-type object vars)
1214 (case poly-type
1215 (:termlist
1216 `(+ ,@(mapcar #'(lambda (term) (coerce-to-infix :term term vars)) object)))
1217 (:polynomial
1218 (coerce-to-infix :termlist (poly-termlist object) vars))
1219 (:poly-list
1220 `([ ,@(mapcar #'(lambda (p) (coerce-to-infix :polynomial p vars)) object)))
1221 (:term
1222 `(* ,(term-coeff object)
1223 ,@(mapcar #'(lambda (var power) `(expt ,var ,power))
1224 vars (monom-exponents (term-monom object)))))
1225 (otherwise
1226 object)))
1227
1228
1229
1230;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1231;;
1232;; Maxima expression ring
1233;;
1234;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1235
1236(defparameter *expression-ring*
1237 (make-ring
1238 ;;(defun coeff-zerop (expr) (meval1 `(($is) (($equal) ,expr 0))))
1239 :parse #'(lambda (expr)
1240 (when modulus (setf expr ($rat expr)))
1241 expr)
1242 :unit #'(lambda () (if modulus ($rat 1) 1))
[12]1243 :zerop #'(lambda (expr)
1244 ;;When is exactly a maxima expression equal to 0?
1245 (cond ((numberp expr)
[1]1246 (= expr 0))
1247 ((atom expr) nil)
1248 (t
1249 (case (caar expr)
1250 (mrat (eql ($ratdisrep expr) 0))
1251 (otherwise (eql ($totaldisrep expr) 0))))))
1252 :add #'(lambda (x y) (m+ x y))
1253 :sub #'(lambda (x y) (m- x y))
1254 :uminus #'(lambda (x) (m- x))
1255 :mul #'(lambda (x y) (m* x y))
1256 ;;(defun coeff-div (x y) (cadr ($divide x y)))
1257 :div #'(lambda (x y) (m// x y))
1258 :lcm #'(lambda (x y) (meval1 `((|$LCM|) ,x ,y)))
1259 :ezgcd #'(lambda (x y) (apply #'values (cdr ($ezgcd ($totaldisrep x) ($totaldisrep y)))))
1260 ;; :gcd #'(lambda (x y) (second ($ezgcd x y)))))
1261 :gcd #'(lambda (x y) ($gcd x y))))
1262
1263(defvar *maxima-ring* *expression-ring*
1264 "The ring of coefficients, over which all polynomials
1265are assumed to be defined.")
1266
1267
1268
1269;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1270;;
1271;; Maxima expression parsing
1272;;
1273;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1274
1275(defun equal-test-p (expr1 expr2)
1276 (alike1 expr1 expr2))
1277
1278(defun coerce-maxima-list (expr)
1279 "convert a maxima list to lisp list."
1280 (cond
1281 ((and (consp (car expr)) (eql (caar expr) 'mlist)) (cdr expr))
1282 (t expr)))
1283
1284(defun free-of-vars (expr vars) (apply #'$freeof `(,@vars ,expr)))
1285
1286(defun parse-poly (expr vars &aux (vars (coerce-maxima-list vars)))
1287 "Convert a maxima polynomial expression EXPR in variables VARS to internal form."
1288 (labels ((parse (arg) (parse-poly arg vars))
1289 (parse-list (args) (mapcar #'parse args)))
1290 (cond
1291 ((eql expr 0) (make-poly-zero))
1292 ((member expr vars :test #'equal-test-p)
1293 (let ((pos (position expr vars :test #'equal-test-p)))
1294 (make-variable *maxima-ring* (length vars) pos)))
1295 ((free-of-vars expr vars)
1296 ;;This means that variable-free CRE and Poisson forms will be converted
1297 ;;to coefficients intact
1298 (coerce-coeff *maxima-ring* expr vars))
1299 (t
1300 (case (caar expr)
1301 (mplus (reduce #'(lambda (x y) (poly-add *maxima-ring* x y)) (parse-list (cdr expr))))
1302 (mminus (poly-uminus *maxima-ring* (parse (cadr expr))))
1303 (mtimes
1304 (if (endp (cddr expr)) ;unary
1305 (parse (cdr expr))
1306 (reduce #'(lambda (p q) (poly-mul *maxima-ring* p q)) (parse-list (cdr expr)))))
1307 (mexpt
1308 (cond
1309 ((member (cadr expr) vars :test #'equal-test-p)
1310 ;;Special handling of (expt var pow)
1311 (let ((pos (position (cadr expr) vars :test #'equal-test-p)))
1312 (make-variable *maxima-ring* (length vars) pos (caddr expr))))
1313 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
1314 ;; Negative power means division in coefficient ring
1315 ;; Non-integer power means non-polynomial coefficient
1316 (mtell "~%Warning: Expression ~%~M~%contains power which is not a positive integer. Parsing as coefficient.~%"
1317 expr)
1318 (coerce-coeff *maxima-ring* expr vars))
1319 (t (poly-expt *maxima-ring* (parse (cadr expr)) (caddr expr)))))
1320 (mrat (parse ($ratdisrep expr)))
1321 (mpois (parse ($outofpois expr)))
1322 (otherwise
1323 (coerce-coeff *maxima-ring* expr vars)))))))
1324
1325(defun parse-poly-list (expr vars)
1326 (case (caar expr)
1327 (mlist (mapcar #'(lambda (p) (parse-poly p vars)) (cdr expr)))
1328 (t (merror "Expression ~M is not a list of polynomials in variables ~M."
1329 expr vars))))
1330(defun parse-poly-list-list (poly-list-list vars)
1331 (mapcar #'(lambda (g) (parse-poly-list g vars)) (coerce-maxima-list poly-list-list)))
1332
1333
1334
1335;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1336;;
1337;; Order utilities
1338;;
1339;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1340(defun find-order (order)
1341 "This function returns the order function bases on its name."
1342 (cond
1343 ((null order) nil)
1344 ((symbolp order)
1345 (case order
1346 ((lex :lex $lex) #'lex>)
1347 ((grlex :grlex $grlex) #'grlex>)
1348 ((grevlex :grevlex $grevlex) #'grevlex>)
1349 ((invlex :invlex $invlex) #'invlex>)
1350 ((elimination-order-1 :elimination-order-1 elimination_order_1) #'elimination-order-1)
1351 (otherwise
1352 (mtell "~%Warning: Order ~M not found. Using default.~%" order))))
1353 (t
1354 (mtell "~%Order specification ~M is not recognized. Using default.~%" order)
1355 nil)))
1356
1357(defun find-ring (ring)
1358 "This function returns the ring structure bases on input symbol."
1359 (cond
1360 ((null ring) nil)
1361 ((symbolp ring)
1362 (case ring
1363 ((expression-ring :expression-ring $expression_ring) *expression-ring*)
1364 ((ring-of-integers :ring-of-integers $ring_of_integers) *ring-of-integers*)
1365 (otherwise
1366 (mtell "~%Warning: Ring ~M not found. Using default.~%" ring))))
1367 (t
1368 (mtell "~%Ring specification ~M is not recognized. Using default.~%" ring)
1369 nil)))
1370
1371(defmacro with-monomial-order ((order) &body body)
1372 "Evaluate BODY with monomial order set to ORDER."
1373 `(let ((*monomial-order* (or (find-order ,order) *monomial-order*)))
1374 . ,body))
1375
1376(defmacro with-coefficient-ring ((ring) &body body)
1377 "Evaluate BODY with coefficient ring set to RING."
1378 `(let ((*maxima-ring* (or (find-ring ,ring) *maxima-ring*)))
1379 . ,body))
1380
1381(defmacro with-elimination-orders ((primary secondary elimination-order)
1382 &body body)
1383 "Evaluate BODY with primary and secondary elimination orders set to PRIMARY and SECONDARY."
[17]1384 `(let ((*primary-elimination-order* (or (find-order ,primary) *primary-elimination-order*))
1385 (*secondary-elimination-order* (or (find-order ,secondary) *secondary-elimination-order*))
1386 (*elimination-order* (or (find-order ,elimination-order) *elimination-order*)))
1387 . ,body))
[19]1388
[17]1389
[20]1390
[17]1391;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1392;;
[26]1393;; Conversion from internal form to Maxima general form
1394;;
[17]1395;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1396
[1]1397(defun maxima-head ()
1398 (if $poly_return_term_list
1399 '(mlist)
1400 '(mplus)))
1401
1402(defun coerce-to-maxima (poly-type object vars)
1403 (case poly-type
1404 (:polynomial
1405 `(,(maxima-head) ,@(mapcar #'(lambda (term) (coerce-to-maxima :term term vars)) (poly-termlist object))))
1406 (:poly-list
1407 `((mlist) ,@(mapcar #'(lambda (p) ($ratdisrep (coerce-to-maxima :polynomial p vars))) object)))
1408 (:term
1409 `((mtimes) ,($ratdisrep (term-coeff object))
1410 ,@(mapcar #'(lambda (var power) `((mexpt) ,var ,power))
1411 vars (monom-exponents (term-monom object)))))
1412 ;; Assumes that Lisp and Maxima logicals coincide
1413 (:logical object)
1414 (otherwise
1415 object)))
1416
1417
1418
1419;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1420;;
1421;; Macro facility for writing Maxima-level wrappers for
1422;; functions operating on internal representation
1423;;
1424;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1425
1426(defmacro with-parsed-polynomials (((maxima-vars &optional (maxima-new-vars nil new-vars-supplied-p))
1427 &key (polynomials nil)
1428 (poly-lists nil)
1429 (poly-list-lists nil)
1430 (value-type nil))
1431 &body body
1432 &aux (vars (gensym))
1433 (new-vars (gensym)))
1434 `(let ((,vars (coerce-maxima-list ,maxima-vars))
1435 ,@(when new-vars-supplied-p
1436 (list `(,new-vars (coerce-maxima-list ,maxima-new-vars)))))
1437 (coerce-to-maxima
1438 ,value-type
1439 (with-coefficient-ring ($poly_coefficient_ring)
1440 (with-monomial-order ($poly_monomial_order)
1441 (with-elimination-orders ($poly_primary_elimination_order
1442 $poly_secondary_elimination_order
1443 $poly_elimination_order)
[18]1444 (let ,(let ((args nil))
[1]1445 (dolist (p polynomials args)
1446 (setf args (cons `(,p (parse-poly ,p ,vars)) args)))
1447 (dolist (p poly-lists args)
1448 (setf args (cons `(,p (parse-poly-list ,p ,vars)) args)))
1449 (dolist (p poly-list-lists args)
1450 (setf args (cons `(,p (parse-poly-list-list ,p ,vars)) args))))
1451 . ,body))))
1452 ,(if new-vars-supplied-p
1453 `(append ,vars ,new-vars)
1454 vars))))
[18]1455
[1]1456(defmacro define-unop (maxima-name fun-name
1457 &optional (documentation nil documentation-supplied-p))
1458 "Define a MAXIMA-level unary operator MAXIMA-NAME corresponding to unary function FUN-NAME."
1459 `(defun ,maxima-name (p vars
1460 &aux
1461 (vars (coerce-maxima-list vars))
1462 (p (parse-poly p vars)))
1463 ,@(when documentation-supplied-p (list documentation))
1464 (coerce-to-maxima :polynomial (,fun-name *maxima-ring* p) vars)))
1465
1466(defmacro define-binop (maxima-name fun-name
1467 &optional (documentation nil documentation-supplied-p))
1468 "Define a MAXIMA-level binary operator MAXIMA-NAME corresponding to binary function FUN-NAME."
1469 `(defmfun ,maxima-name (p q vars
1470 &aux
1471 (vars (coerce-maxima-list vars))
1472 (p (parse-poly p vars))
1473 (q (parse-poly q vars)))
1474 ,@(when documentation-supplied-p (list documentation))
1475 (coerce-to-maxima :polynomial (,fun-name *maxima-ring* p q) vars)))
1476
1477
1478
1479;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1480;;
1481;; Maxima-level interface functions
1482;;
1483;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1484
1485;; Auxillary function for removing zero polynomial
1486(defun remzero (plist) (remove #'poly-zerop plist))
1487
1488;;Simple operators
1489
1490(define-binop $poly_add poly-add
1491 "Adds two polynomials P and Q")
1492
1493(define-binop $poly_subtract poly-sub
1494 "Subtracts a polynomial Q from P.")
1495
1496(define-binop $poly_multiply poly-mul
1497 "Returns the product of polynomials P and Q.")
1498
1499(define-binop $poly_s_polynomial spoly
1500 "Returns the syzygy polynomial (S-polynomial) of two polynomials P and Q.")
1501
1502(define-unop $poly_primitive_part poly-primitive-part
1503 "Returns the polynomial P divided by GCD of its coefficients.")
1504
1505(define-unop $poly_normalize poly-normalize
1506 "Returns the polynomial P divided by the leading coefficient.")
1507
1508;;Functions
1509
1510(defmfun $poly_expand (p vars)
1511 "This function is equivalent to EXPAND(P) if P parses correctly to a polynomial.
1512If the representation is not compatible with a polynomial in variables VARS,
1513the result is an error."
1514 (with-parsed-polynomials ((vars) :polynomials (p)
1515 :value-type :polynomial)
1516 p))
1517
1518(defmfun $poly_expt (p n vars)
1519 (with-parsed-polynomials ((vars) :polynomials (p) :value-type :polynomial)
1520 (poly-expt *maxima-ring* p n)))
1521
1522(defmfun $poly_content (p vars)
1523 (with-parsed-polynomials ((vars) :polynomials (p))
1524 (poly-content *maxima-ring* p)))
1525
1526(defmfun $poly_pseudo_divide (f fl vars
1527 &aux (vars (coerce-maxima-list vars))
[29]1528 (f (parse-poly f vars))
[1]1529 (fl (parse-poly-list fl vars)))
1530 (multiple-value-bind (quot rem c division-count)
1531 (poly-pseudo-divide *maxima-ring* f fl)
1532 `((mlist)
1533 ,(coerce-to-maxima :poly-list quot vars)
1534 ,(coerce-to-maxima :polynomial rem vars)
1535 ,c
1536 ,division-count)))
1537
1538(defmfun $poly_exact_divide (f g vars)
1539 (with-parsed-polynomials ((vars) :polynomials (f g) :value-type :polynomial)
1540 (poly-exact-divide *maxima-ring* f g)))
1541
1542(defmfun $poly_normal_form (f fl vars)
1543 (with-parsed-polynomials ((vars) :polynomials (f)
1544 :poly-lists (fl)
1545 :value-type :polynomial)
1546 (normal-form *maxima-ring* f (remzero fl) nil)))
1547
1548(defmfun $poly_buchberger_criterion (g vars)
1549 (with-parsed-polynomials ((vars) :poly-lists (g) :value-type :logical)
1550 (buchberger-criterion *maxima-ring* g)))
1551
1552(defmfun $poly_buchberger (fl vars)
1553 (with-parsed-polynomials ((vars) :poly-lists (fl) :value-type :poly-list)
1554 (buchberger *maxima-ring* (remzero fl) 0 nil)))
1555
1556(defmfun $poly_reduction (plist vars)
1557 (with-parsed-polynomials ((vars) :poly-lists (plist)
1558 :value-type :poly-list)
1559 (reduction *maxima-ring* plist)))
1560
1561(defmfun $poly_minimization (plist vars)
1562 (with-parsed-polynomials ((vars) :poly-lists (plist)
1563 :value-type :poly-list)
1564 (minimization plist)))
1565
1566(defmfun $poly_normalize_list (plist vars)
1567 (with-parsed-polynomials ((vars) :poly-lists (plist)
1568 :value-type :poly-list)
1569 (poly-normalize-list *maxima-ring* plist)))
1570
1571(defmfun $poly_grobner (f vars)
1572 (with-parsed-polynomials ((vars) :poly-lists (f)
1573 :value-type :poly-list)
1574 (grobner *maxima-ring* (remzero f))))
1575
1576(defmfun $poly_reduced_grobner (f vars)
1577 (with-parsed-polynomials ((vars) :poly-lists (f)
1578 :value-type :poly-list)
1579 (reduced-grobner *maxima-ring* (remzero f))))
1580
1581(defmfun $poly_depends_p (p var mvars
1582 &aux (vars (coerce-maxima-list mvars))
1583 (pos (position var vars)))
1584 (if (null pos)
1585 (merror "~%Variable ~M not in the list of variables ~M." var mvars)
1586 (poly-depends-p (parse-poly p vars) pos)))
1587
1588(defmfun $poly_elimination_ideal (flist k vars)
1589 (with-parsed-polynomials ((vars) :poly-lists (flist)
1590 :value-type :poly-list)
1591 (elimination-ideal *maxima-ring* flist k nil 0)))
1592
1593(defmfun $poly_colon_ideal (f g vars)
1594 (with-parsed-polynomials ((vars) :poly-lists (f g) :value-type :poly-list)
1595 (colon-ideal *maxima-ring* f g nil)))
1596
1597(defmfun $poly_ideal_intersection (f g vars)
1598 (with-parsed-polynomials ((vars) :poly-lists (f g) :value-type :poly-list)
1599 (ideal-intersection *maxima-ring* f g nil)))
1600
1601(defmfun $poly_lcm (f g vars)
1602 (with-parsed-polynomials ((vars) :polynomials (f g) :value-type :polynomial)
1603 (poly-lcm *maxima-ring* f g)))
1604
1605(defmfun $poly_gcd (f g vars)
1606 ($first ($divide (m* f g) ($poly_lcm f g vars))))
1607
1608(defmfun $poly_grobner_equal (g1 g2 vars)
1609 (with-parsed-polynomials ((vars) :poly-lists (g1 g2))
1610 (grobner-equal *maxima-ring* g1 g2)))
1611
1612(defmfun $poly_grobner_subsetp (g1 g2 vars)
1613 (with-parsed-polynomials ((vars) :poly-lists (g1 g2))
1614 (grobner-subsetp *maxima-ring* g1 g2)))
1615
1616(defmfun $poly_grobner_member (p g vars)
1617 (with-parsed-polynomials ((vars) :polynomials (p) :poly-lists (g))
1618 (grobner-member *maxima-ring* p g)))
1619
1620(defmfun $poly_ideal_saturation1 (f p vars)
1621 (with-parsed-polynomials ((vars) :poly-lists (f) :polynomials (p)
1622 :value-type :poly-list)
1623 (ideal-saturation-1 *maxima-ring* f p 0)))
1624
1625(defmfun $poly_saturation_extension (f plist vars new-vars)
1626 (with-parsed-polynomials ((vars new-vars)
1627 :poly-lists (f plist)
1628 :value-type :poly-list)
1629 (saturation-extension *maxima-ring* f plist)))
1630
1631(defmfun $poly_polysaturation_extension (f plist vars new-vars)
[26]1632 (with-parsed-polynomials ((vars new-vars)
1633 :poly-lists (f plist)
1634 :value-type :poly-list)
1635 (polysaturation-extension *maxima-ring* f plist)))
1636
1637(defmfun $poly_ideal_polysaturation1 (f plist vars)
1638 (with-parsed-polynomials ((vars) :poly-lists (f plist)
1639 :value-type :poly-list)
1640 (ideal-polysaturation-1 *maxima-ring* f plist 0 nil)))
1641
1642(defmfun $poly_ideal_saturation (f g vars)
1643 (with-parsed-polynomials ((vars) :poly-lists (f g)
1644 :value-type :poly-list)
1645 (ideal-saturation *maxima-ring* f g 0 nil)))
1646
1647(defmfun $poly_ideal_polysaturation (f ideal-list vars)
1648 (with-parsed-polynomials ((vars) :poly-lists (f)
1649 :poly-list-lists (ideal-list)
1650 :value-type :poly-list)
1651 (ideal-polysaturation *maxima-ring* f ideal-list 0 nil)))
1652
1653(defmfun $poly_lt (f vars)
1654 (with-parsed-polynomials ((vars) :polynomials (f) :value-type :polynomial)
1655 (make-poly-from-termlist (list (poly-lt f)))))
1656
1657(defmfun $poly_lm (f vars)
1658 (with-parsed-polynomials ((vars) :polynomials (f) :value-type :polynomial)
1659 (make-poly-from-termlist (list (make-term (poly-lm f) (funcall (ring-unit *maxima-ring*)))))))
1660
Note: See TracBrowser for help on using the repository browser.