| 1 | /*  -*-  Mode: Maxima -*- */
 | 
|---|
| 2 | 
 | 
|---|
| 3 | /*
 | 
|---|
| 4 | **
 | 
|---|
| 5 | ** Copyright (C) 1999, 2002, 2009 Marek Rychlik <rychlik@u.arizona.edu>
 | 
|---|
| 6 | **
 | 
|---|
| 7 | ** This program is free software; you can redistribute it and/or modify
 | 
|---|
| 8 | ** it under the terms of the GNU General Public License as published by
 | 
|---|
| 9 | ** the Free Software Foundation; either version 2 of the License, or
 | 
|---|
| 10 | ** (at your option) any later version.
 | 
|---|
| 11 | **
 | 
|---|
| 12 | ** This program is distributed in the hope that it will be useful,
 | 
|---|
| 13 | ** but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
|---|
| 14 | ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
|---|
| 15 | ** GNU General Public License for more details.
 | 
|---|
| 16 | **
 | 
|---|
| 17 | ** You should have received a copy of the GNU General Public License
 | 
|---|
| 18 | ** along with this program; if not, write to the Free Software
 | 
|---|
| 19 | ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 | 
|---|
| 20 | **
 | 
|---|
| 21 | */
 | 
|---|
| 22 | showtime:true;
 | 
|---|
| 23 | 
 | 
|---|
| 24 | /* POLY_MONOMIAL_ORDER switch represents the monomial order that will globally be in effect
 | 
|---|
| 25 |   for the succeeding operations. */
 | 
|---|
| 26 | 
 | 
|---|
| 27 | poly_monomial_order:'lex;
 | 
|---|
| 28 | 
 | 
|---|
| 29 | /* POLY_EXPAND parses polynomials to internal form and back. It can be used to test
 | 
|---|
| 30 |   whether an expression correctly parses to the internal representation.
 | 
|---|
| 31 |   The following examples illustrate that indexed and transcendental function variables
 | 
|---|
| 32 |   are allowed. */
 | 
|---|
| 33 | 
 | 
|---|
| 34 | poly_expand(x,[x,y]);
 | 
|---|
| 35 | poly_expand(x+y,[x,y]);
 | 
|---|
| 36 | poly_expand(x-y,[x,y]);
 | 
|---|
| 37 | poly_expand((x-y)*(x+y),[x,y]);
 | 
|---|
| 38 | poly_expand((x+y)^2,[x,y]);
 | 
|---|
| 39 | poly_expand((x+y)^5,[x,y]);
 | 
|---|
| 40 | poly_expand(x/y-1,[x]);
 | 
|---|
| 41 | poly_expand(x^2/sqrt(y)-x*exp(y)-1,[x]);
 | 
|---|
| 42 | poly_expand(sin(x)-sin(x)^2-1,[sin(x)]);
 | 
|---|
| 43 | poly_expand((x[2]/sin(y[3])-1)^5,[x[2]]),poly_return_term_list:true;
 | 
|---|
| 44 | 
 | 
|---|
| 45 | /* POLY_ADD, POLY_SUBTRACT, POLY_MULTIPLY and POLY_EXPT are the arithmetical operations on polynomials.
 | 
|---|
| 46 |    These are performed using the internal representation, but the results are converted back to the
 | 
|---|
| 47 |    Maxima general form */
 | 
|---|
| 48 | 
 | 
|---|
| 49 | poly_add(x^2*y+z,x-z,[x,y,z]);
 | 
|---|
| 50 | poly_subtract(x^2*y+z,x-z,[x,y,z]);
 | 
|---|
| 51 | poly_multiply(x^2*y+z,x-z,[x,y,z]) - (x^2*y+z)*(x-z), expand;
 | 
|---|
| 52 | poly_expt(x-y, 3, [x,y]) - (x-y)^3, expand;
 | 
|---|
| 53 | 
 | 
|---|
| 54 | /* POLY_CONTENT extracts the GCD of its coefficients */
 | 
|---|
| 55 | poly_content(21*x+35*y,[x,y]);
 | 
|---|
| 56 | 
 | 
|---|
| 57 | /* POLY_PRIMITIVE_PART divides a polynomial by the GCD of its coefficients */
 | 
|---|
| 58 | poly_primitive_part(21*x+35*y,[x,y]);
 | 
|---|
| 59 | 
 | 
|---|
| 60 | /* POLY_S_POLYNOMIAL computest the syzygy polynomial (S-polynomial) of two polynomials */
 | 
|---|
| 61 | poly_s_polynomial(x+y,x-y,[x,y]);
 | 
|---|
| 62 | 
 | 
|---|
| 63 | 
 | 
|---|
| 64 | /* POLY_NORMAL_FORM finds the normal form of a polynomial with respect to a set of polynomials. */
 | 
|---|
| 65 | poly_normal_form(x^2+y^2,[x-y,x+y],[x,y]);
 | 
|---|
| 66 | poly_pseudo_divide(2*x^2+3*y^2,[7*x-y^2,11*x+y],[x,y]);
 | 
|---|
| 67 | poly_exact_divide((x+y)^2,x+y,[x,y]);
 | 
|---|
| 68 | 
 | 
|---|
| 69 | /* POLY_BUCHBERGER performs the Buchberger algorithm on a list of polynomials and returns
 | 
|---|
| 70 |    the resulting Grobner basis */
 | 
|---|
| 71 | poly_buchberger([x^2-y*x,x^2+y+x*y^2],[x,y]);
 | 
|---|
| 72 | 
 | 
|---|
| 73 | /* POLY_REDUCTION reduces a set of polynomials, so that
 | 
|---|
| 74 |   each polynomial is fully reduced with respect to the other polynomials */
 | 
|---|
| 75 | 
 | 
|---|
| 76 | poly_reduction([x^2-x*y,x*y^2+y+x^2,x*y^2+x*y+y,x*y-y^2,y^3+y^2+y],[x,y]);
 | 
|---|
| 77 | 
 | 
|---|
| 78 | /* POLY_MINIMIZATION selects a subset of a set of polynomials, so that no leading monomial is divisible by
 | 
|---|
| 79 |   another leading monomial */
 | 
|---|
| 80 | 
 | 
|---|
| 81 | poly_minimization([x^2-x*y,x*y^2+y+x^2,x*y^2+x*y+y,x*y-y^2,y^3+y^2+y],[x,y]);
 | 
|---|
| 82 | 
 | 
|---|
| 83 | /* POLY_REDUCED_GROBNER returns a reduced Grobner basis */
 | 
|---|
| 84 | poly_reduced_grobner([x^2-y*x,x^2+y+x*y^2],[x,y]);
 | 
|---|
| 85 | 
 | 
|---|
| 86 | /* POLY_NORMALIZE divides a polynomial by its leading coefficient */
 | 
|---|
| 87 | poly_normalize(2*x+y,[x,y]);
 | 
|---|
| 88 | 
 | 
|---|
| 89 | /* POLY_NORMALIZE_LIST applies POLY_NORMALIZE to each polynomial in the list */
 | 
|---|
| 90 | 
 | 
|---|
| 91 | poly_normalize_list([2*x+y,3*x^2+7],[x,y]);
 | 
|---|
| 92 | 
 | 
|---|
| 93 | /* POLY_DEPENDS_P tests whether a polynomial depends on a variable */
 | 
|---|
| 94 | 
 | 
|---|
| 95 | poly_depends_p(x^2+y,x,[x,y,z]);
 | 
|---|
| 96 | poly_depends_p(x^2+y,z,[x,y,z]);
 | 
|---|
| 97 | 
 | 
|---|
| 98 | 
 | 
|---|
| 99 | /* POLY_ELIMINATION_IDEAL returns the grobner basis of the K-th elimination ideal of an
 | 
|---|
| 100 |    ideal specified as a list of generating polynomials (not necessarily Grobner basis */
 | 
|---|
| 101 | 
 | 
|---|
| 102 | poly_elimination_ideal([x+y,x-y],0,[x,y]);
 | 
|---|
| 103 | poly_elimination_ideal([x+y,x-y],1,[x,y]);
 | 
|---|
| 104 | poly_elimination_ideal([x+y,x-y],2,[x,y]);
 | 
|---|
| 105 | 
 | 
|---|
| 106 | /* POLY_IDEAL_INTERSECTION returns the intersection of two ideals */
 | 
|---|
| 107 | poly_ideal_intersection([x^2+y,x^2-y],[x,y^2],[x,y]);
 | 
|---|
| 108 | 
 | 
|---|
| 109 | /* POLY_LCM and POLY_GCD are the Grobner versions of LCM and GCD */
 | 
|---|
| 110 | 
 | 
|---|
| 111 | poly_lcm(x*y^2-x,x^2*y+x,[x,y]);
 | 
|---|
| 112 | poly_gcd(x*y^2-x,x^2*y+x,[x,y]);
 | 
|---|
| 113 | 
 | 
|---|
| 114 | /* POLY_GROBNER_MEMBER tests whether a polynomial belongs to an ideal generated by a list of polynomials,
 | 
|---|
| 115 |    which is assumed to be a Grobner basis. Equivalent to NORMAL_FORM being 0. */
 | 
|---|
| 116 | 
 | 
|---|
| 117 | poly_grobner_member(x+y,[x,y],[x,y]);
 | 
|---|
| 118 | 
 | 
|---|
| 119 | /* POLY_GROBNER_EQUAL tests whether two Grobner bases generate the same ideal.
 | 
|---|
| 120 |    This is equivalent to checking that every polynomial of the first basis reduces to 0
 | 
|---|
| 121 |    modulo the second basis and vice versa. Note that in the example below the
 | 
|---|
| 122 |    first list is not a Grobner basis, and thus the result is FALSE. */
 | 
|---|
| 123 | 
 | 
|---|
| 124 | poly_grobner_equal([x+y,x-y],[x,y],[x,y]);
 | 
|---|
| 125 | 
 | 
|---|
| 126 | /* POLY_GROBNER_SUBSETP tests whether an ideal generated by the first list of polynomials
 | 
|---|
| 127 |    is contained in the ideal generated by the second list. For this test to always succeed,
 | 
|---|
| 128 |    the second list must be a Grobner basis */
 | 
|---|
| 129 | 
 | 
|---|
| 130 | poly_grobner_subsetp([x+y,x-y],[x,y],[x,y]);
 | 
|---|
| 131 | 
 | 
|---|
| 132 | /* POLY_POLYSATURATION_EXTENSION implements the famous Rabinowitz trick. */
 | 
|---|
| 133 | poly_polysaturation_extension([x,y],[x^2,y^3],[x,y],[u,v]);
 | 
|---|
| 134 | 
 | 
|---|
| 135 | poly_saturation_extension([x,y],[x^2,y^3],[x,y],[u,v]);
 | 
|---|
| 136 | 
 | 
|---|
| 137 | /* POLY_IDEAL_POLYSATURATION1 for a given ideal I and polynomials f, g, ..., finds
 | 
|---|
| 138 |    the colon ideal I : f^inf : g^inf : ... */
 | 
|---|
| 139 | poly_ideal_polysaturation1([x,y],[x^2,y^3],[x,y]);
 | 
|---|
| 140 | 
 | 
|---|
| 141 | /* POLY_IDEAL_SATURATION for given ideals I and J computes the ideal I : J^inf. */
 | 
|---|
| 142 | poly_ideal_saturation([x,y],[x^2,y^3],[x,y]);
 | 
|---|
| 143 | 
 | 
|---|
| 144 | /* POLY_IDEAL_POLYSATURATION for a given ideal I and a sequence of ideals J1, J2, J3, ...,
 | 
|---|
| 145 |   finds the ideal I : J1^inf : J2^inf : J3^inf : ... */
 | 
|---|
| 146 | poly_ideal_polysaturation([x,y],[[x^2],[y^3]],[x,y]);
 | 
|---|
| 147 | poly_ideal_polysaturation([x^4-y^4], [[x-y],[x^2+y^2, x+y]],[x,y]);
 | 
|---|
| 148 | 
 | 
|---|
| 149 | /* POLY_COLON_IDEAL finds the reduced Grobner basis of the colon ideal I:J, i.e. the set of polynomials H
 | 
|---|
| 150 |    such that for every polynomial G in I there is a polynomial F in J for which H*F=G; 
 | 
|---|
| 151 |    in other words, I:J = {H: H*J is contained in I} */
 | 
|---|
| 152 | 
 | 
|---|
| 153 | poly_colon_ideal([x^2*y],[y],[x,y]);
 | 
|---|
| 154 | 
 | 
|---|
| 155 | /* POLY_BUCHBERGER_CRITERION verifies whether a given set of polynomials is a Grobner basis with respect
 | 
|---|
| 156 |    to the current term order */
 | 
|---|
| 157 | poly_buchberger_criterion([x,y],[x,y]);
 | 
|---|
| 158 | poly_buchberger_criterion([x-y,x+y],[x,y]);
 | 
|---|
| 159 | 
 | 
|---|
| 160 | /* Grobner basis associated with Enneper minimal surface */
 | 
|---|
| 161 | poly_grobner([x-3*u-3*u*v^2+u^3,y-3*v-3*u^2*v+v^3,z-3*u^2+3*v^2],[u,v,x,y,z]);
 | 
|---|
| 162 | poly_reduced_grobner([x-3*u-3*u*v^2+u^3,y-3*v-3*u^2*v+v^3,z-3*u^2+3*v^2],[u,v,x,y,z]);
 | 
|---|
| 163 | 
 | 
|---|
| 164 | /* Cyclic roots of degree 5 */
 | 
|---|
| 165 | poly_reduced_grobner([x+y+z+u+v,x*y+y*z+z*u+u*v+v*x,x*y*z+y*z*u+z*u*v+u*v*x+v*x*y,x*y*z*u+y*z*u*v+z*u*v*x+u*v*x*y+v*x*y*z,x*y*z*u*v-1],[u,v,x,y,z]);
 | 
|---|
| 166 | 
 | 
|---|
| 167 | /* The next example demonstrates the use of the switch
 | 
|---|
| 168 |   POLY_RETURN_TERM_LIST, which, if set to TRUE, makes the results to
 | 
|---|
| 169 |   appear as lists of terms listed in the current monomial order rather
 | 
|---|
| 170 |   than a general form expression */
 | 
|---|
| 171 | 
 | 
|---|
| 172 | block([orders:[lex,grlex,grevlex,invlex]],
 | 
|---|
| 173 | for i:1 thru length(orders) do (
 | 
|---|
| 174 |   print(ev([orders[i], poly_expand((x^2+x+y)^3,[x,y])], poly_monomial_order=orders[i]))
 | 
|---|
| 175 |   )
 | 
|---|
| 176 | ), poly_return_term_list=true;
 | 
|---|
| 177 | 
 | 
|---|
| 178 | /* Grobner bases can be computed over coefficient ring of maxima general expressions */
 | 
|---|
| 179 | poly_grobner([x*y-1,x+y],[x]);
 | 
|---|
| 180 | 
 | 
|---|
| 181 | /* A tough example learned from Cox */
 | 
|---|
| 182 | poly_grobner([x^5+y^4+z^3-1,x^3+y^3+z^2-1], [x,y,z]);
 | 
|---|
| 183 | 
 | 
|---|
| 184 | /* An even tougher example of Cox */
 | 
|---|
| 185 | poly_grobner([x^5+y^4+z^3-1,x^3+y^3+z^2-1], [x,y,z]);
 | 
|---|
| 186 | 
 | 
|---|
| 187 | /* We can also perform Grobner basis calculations modulo prime */
 | 
|---|
| 188 | poly_grobner([x^5+y^4+z^3-1,x^3+y^3+z^2-1], [x,y,z]), modulus=3;
 | 
|---|
| 189 | 
 | 
|---|
| 190 | /* We can also explicitly ask for the Grobner basis to be calculated using only
 | 
|---|
| 191 |   integer coefficients. An error will result if this assertion is not satisfied. */
 | 
|---|
| 192 | poly_grobner([x^5+y^4+z^3-1,x^3+y^3+z^2-1], [x,y,z]), poly_coefficient_ring='ring_of_integers;
 | 
|---|
| 193 | 
 | 
|---|
| 194 | /* The following several tests demonstrate the use of jet variables useful in processing differential equations */
 | 
|---|
| 195 | 
 | 
|---|
| 196 | 
 | 
|---|
| 197 | /* Clear some variables */
 | 
|---|
| 198 | kill(ode,t,x,y,u,v,r); 
 | 
|---|
| 199 | 
 | 
|---|
| 200 | /* Set up dependencies */
 | 
|---|
| 201 | depends([x,y,u,v,r],t); 
 | 
|---|
| 202 | 
 | 
|---|
| 203 | /* These are equations representing mathematical pendulum */
 | 
|---|
| 204 | ode:[x^2+y^2-c,'diff(x,t)-u,'diff(y,t)-v,'diff(u,t)+r*x,'diff(v,t)+r*y+1];
 | 
|---|
| 205 | 
 | 
|---|
| 206 | jet_vars(k):=apply(append,reverse(makelist(['diff(x,t,j),'diff(y,t,j),'diff(u,t,j),'diff(v,t,j),'diff(r,t,j)],j,0,k+1)));
 | 
|---|
| 207 | 
 | 
|---|
| 208 | /* Define k-fold prolongation */
 | 
|---|
| 209 | prolongate(k):=apply(append,makelist(diff(ode,t,j),j,0,k));
 | 
|---|
| 210 | 
 | 
|---|
| 211 | /* Define Grobner basis of k-fold prolongation */
 | 
|---|
| 212 | gb(k):=poly_reduced_grobner(prolongate(k),jet_vars(k));
 | 
|---|
| 213 | 
 | 
|---|
| 214 | /* Define the l-th projection of the k-th prolongation */
 | 
|---|
| 215 | projection(l, k):=poly_elimination_ideal(prolongate(k),5*l,jet_vars(k));
 | 
|---|
| 216 | 
 | 
|---|
| 217 | /* Compute some projections */
 | 
|---|
| 218 | projection(0, 0);
 | 
|---|
| 219 | projection(1, 1);
 | 
|---|