| 1 | ;;; -*- Mode: Lisp -*-
|
|---|
| 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|---|
| 3 | ;;;
|
|---|
| 4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
|---|
| 5 | ;;;
|
|---|
| 6 | ;;; This program is free software; you can redistribute it and/or modify
|
|---|
| 7 | ;;; it under the terms of the GNU General Public License as published by
|
|---|
| 8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
|---|
| 9 | ;;; (at your option) any later version.
|
|---|
| 10 | ;;;
|
|---|
| 11 | ;;; This program is distributed in the hope that it will be useful,
|
|---|
| 12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|---|
| 13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|---|
| 14 | ;;; GNU General Public License for more details.
|
|---|
| 15 | ;;;
|
|---|
| 16 | ;;; You should have received a copy of the GNU General Public License
|
|---|
| 17 | ;;; along with this program; if not, write to the Free Software
|
|---|
| 18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|---|
| 19 | ;;;
|
|---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|---|
| 21 |
|
|---|
| 22 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|---|
| 23 | ;;
|
|---|
| 24 | ;; Standard postprocessing of Grobner bases:
|
|---|
| 25 | ;; - reduction
|
|---|
| 26 | ;; - minimization
|
|---|
| 27 | ;;
|
|---|
| 28 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|---|
| 29 |
|
|---|
| 30 | (defpackage "GB-POSTPROCESSING"
|
|---|
| 31 | (:use :cl :monomial :division :polynomial :ring :ring-and-order)
|
|---|
| 32 | (:export "REDUCTION" "MINIMIZATION"))
|
|---|
| 33 |
|
|---|
| 34 | (in-package :gb-postprocessing)
|
|---|
| 35 |
|
|---|
| 36 | (defun reduction (ring-and-order plist
|
|---|
| 37 | &aux
|
|---|
| 38 | (ring (ro-ring ring-and-order)))
|
|---|
| 39 | "Reduce a list of polynomials PLIST, so that non of the terms in any of
|
|---|
| 40 | the polynomials is divisible by a leading monomial of another
|
|---|
| 41 | polynomial. Return the reduced list."
|
|---|
| 42 | (declare (type ring-and-order ring-and-order))
|
|---|
| 43 | (do ((q plist)
|
|---|
| 44 | (found t)
|
|---|
| 45 | p)
|
|---|
| 46 | ((not found)
|
|---|
| 47 | (mapcar #'(lambda (x) (poly-primitive-part ring x)) q))
|
|---|
| 48 | ;; 1) Find p in Q such that p is reducible mod Q\{p}
|
|---|
| 49 | ;; 2) Replace p with remainder from division by Q\{p}, if
|
|---|
| 50 | ;; non-zero, else set Q to Q\{p}
|
|---|
| 51 | (setf found nil)
|
|---|
| 52 | (dolist (x q)
|
|---|
| 53 | (multiple-value-bind (h c div-count)
|
|---|
| 54 | (normal-form ring-and-order x (remove x q) nil #| not a top reduction! |#)
|
|---|
| 55 | (declare (ignore c))
|
|---|
| 56 | (when (plusp div-count)
|
|---|
| 57 | (setf found t
|
|---|
| 58 | p h)
|
|---|
| 59 | (return))))
|
|---|
| 60 | (when found
|
|---|
| 61 | (if (poly-zerop p)
|
|---|
| 62 | (setf q q1)
|
|---|
| 63 | (setf q (cons p q1))))))
|
|---|
| 64 |
|
|---|
| 65 |
|
|---|
| 66 | (defun minimization (plist)
|
|---|
| 67 | "Returns a sublist of the polynomial list P spanning the same
|
|---|
| 68 | monomial ideal as P but minimal, i.e. no leading monomial
|
|---|
| 69 | of a polynomial in the sublist divides the leading monomial
|
|---|
| 70 | of another polynomial."
|
|---|
| 71 | (do ((q plist)
|
|---|
| 72 | (found t))
|
|---|
| 73 | ((not found) q)
|
|---|
| 74 | ;;1) Find p in Q such that lm(p) is in LM(Q\{p})
|
|---|
| 75 | ;;2) Set Q <- Q\{p}
|
|---|
| 76 | (setf found nil)
|
|---|
| 77 | ;; NOTE: Below we rely on the fact that NIL is not of type POLY
|
|---|
| 78 | (let ((x (find-if
|
|---|
| 79 | #'(lambda (y)
|
|---|
| 80 | (find-if #'(lambda (p)
|
|---|
| 81 | (monom-divides-p
|
|---|
| 82 | (poly-lm p)
|
|---|
| 83 | (poly-lm y)))
|
|---|
| 84 | (remove y q)))
|
|---|
| 85 | q)))
|
|---|
| 86 | (when x
|
|---|
| 87 | (setf found t
|
|---|
| 88 | q (delete x q))))))
|
|---|
| 89 |
|
|---|