| 1 | ;;; -*-  Mode: Lisp -*- | 
|---|
| 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 3 | ;;; | 
|---|
| 4 | ;;;  Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu> | 
|---|
| 5 | ;;; | 
|---|
| 6 | ;;;  This program is free software; you can redistribute it and/or modify | 
|---|
| 7 | ;;;  it under the terms of the GNU General Public License as published by | 
|---|
| 8 | ;;;  the Free Software Foundation; either version 2 of the License, or | 
|---|
| 9 | ;;;  (at your option) any later version. | 
|---|
| 10 | ;;; | 
|---|
| 11 | ;;;  This program is distributed in the hope that it will be useful, | 
|---|
| 12 | ;;;  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 13 | ;;;  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
| 14 | ;;;  GNU General Public License for more details. | 
|---|
| 15 | ;;; | 
|---|
| 16 | ;;;  You should have received a copy of the GNU General Public License | 
|---|
| 17 | ;;;  along with this program; if not, write to the Free Software | 
|---|
| 18 | ;;;  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|---|
| 19 | ;;; | 
|---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 21 |  | 
|---|
| 22 | (defpackage "DIVISION" | 
|---|
| 23 | (:use :cl :utils :ring :monomial :polynomial :grobner-debug :term :ring-and-order) | 
|---|
| 24 | (:export "$POLY_TOP_REDUCTION_ONLY" | 
|---|
| 25 | "POLY-PSEUDO-DIVIDE" | 
|---|
| 26 | "POLY-EXACT-DIVIDE" | 
|---|
| 27 | "NORMAL-FORM-STEP" | 
|---|
| 28 | "NORMAL-FORM" | 
|---|
| 29 | "POLY-NORMALIZE" | 
|---|
| 30 | "POLY-NORMALIZE-LIST" | 
|---|
| 31 | "BUCHBERGER-CRITERION" | 
|---|
| 32 | )) | 
|---|
| 33 |  | 
|---|
| 34 | (in-package :division) | 
|---|
| 35 |  | 
|---|
| 36 | (defvar $poly_top_reduction_only nil | 
|---|
| 37 | "If not FALSE, use top reduction only whenever possible. | 
|---|
| 38 | Top reduction means that division algorithm stops after the first reduction.") | 
|---|
| 39 |  | 
|---|
| 40 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 41 | ;; | 
|---|
| 42 | ;; An implementation of the division algorithm | 
|---|
| 43 | ;; | 
|---|
| 44 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 45 |  | 
|---|
| 46 | (defun grobner-op (ring-and-order c1 c2 m f g | 
|---|
| 47 | &aux | 
|---|
| 48 | (ring (ro-ring ring-and-order))) | 
|---|
| 49 | "Returns C2*F-C1*M*G, where F and G are polynomials M is a monomial. | 
|---|
| 50 | Assume that the leading terms will cancel." | 
|---|
| 51 | (declare (type ring-and-order ring-and-order)) | 
|---|
| 52 | #+grobner-check(funcall (ring-zerop ring) | 
|---|
| 53 | (funcall (ring-sub ring) | 
|---|
| 54 | (funcall (ring-mul ring) c2 (poly-lc f)) | 
|---|
| 55 | (funcall (ring-mul ring) c1 (poly-lc g)))) | 
|---|
| 56 | #+grobner-check(monom-equal-p (poly-lm f) (monom-mul m (poly-lm g))) | 
|---|
| 57 | ;; Note that below we can drop the leading terms of f ang g for the | 
|---|
| 58 | ;; purpose of polynomial arithmetic. | 
|---|
| 59 | ;; | 
|---|
| 60 | ;; TODO: Make sure that the sugar calculation is correct if leading | 
|---|
| 61 | ;; terms are dropped. | 
|---|
| 62 | (poly-sub ring-and-order | 
|---|
| 63 | (scalar-times-poly-1 ring c2 f) | 
|---|
| 64 | (scalar-times-poly-1 ring c1 (monom-times-poly m g)))) | 
|---|
| 65 |  | 
|---|
| 66 | (defun check-loop-invariant (ring-and-order c f a fl r p | 
|---|
| 67 | &aux | 
|---|
| 68 | (ring (ro-ring ring-and-order)) | 
|---|
| 69 | (p-zero (make-poly-zero)) | 
|---|
| 70 | (a (mapcar #'poly-reverse a)) | 
|---|
| 71 | (r (poly-reverse r))) | 
|---|
| 72 | "Check loop invariant of division algorithms, when we divide a | 
|---|
| 73 | polynomial F by the list of polynomials FL. The invariant is the | 
|---|
| 74 | identity C*F=SUM AI*FI+R+P, where F0 is the initial value of F, A is | 
|---|
| 75 | the list of partial quotients, R is the intermediate value of the | 
|---|
| 76 | remainder, and P is the intermediate value which eventually becomes | 
|---|
| 77 | 0. A thing to remember is that the terms of polynomials in A and | 
|---|
| 78 | the polynomial R have their terms in reversed order. Hence, before | 
|---|
| 79 | the arithmetic is performed, we need to fix the order of terms" | 
|---|
| 80 | (format t "----------------------------------------------------------------~%") | 
|---|
| 81 | (format t "#### Loop invariant check ####:~%C=~A~%F=~A~%A=~A~%FL=~A~%R=~A~%P=~A~%" | 
|---|
| 82 | c f a fl r p) | 
|---|
| 83 | (flet ((p-add (x y) (poly-add ring-and-order x y)) | 
|---|
| 84 | (p-sub (x y) (poly-sub ring-and-order x y)) | 
|---|
| 85 | (p-mul (x y) (poly-mul ring-and-order x y))) | 
|---|
| 86 | (let* ((prod (inner-product a fl p-add p-mul p-zero)) | 
|---|
| 87 | (succeeded-p | 
|---|
| 88 | (poly-zerop | 
|---|
| 89 | (p-sub | 
|---|
| 90 | (scalar-times-poly ring c f) | 
|---|
| 91 | (reduce #'p-add (list prod r p)))))) | 
|---|
| 92 | (unless succeeded-p | 
|---|
| 93 | (error "#### Polynomial division Loop invariant failed ####:~%C=~A~%F=~A~%A=~A~%FL=~A~%R=~A~%P=~A~%" | 
|---|
| 94 | c f a fl r p)) | 
|---|
| 95 | succeeded-p))) | 
|---|
| 96 |  | 
|---|
| 97 |  | 
|---|
| 98 | (defun poly-pseudo-divide (ring-and-order f fl | 
|---|
| 99 | &aux | 
|---|
| 100 | (ring (ro-ring ring-and-order))) | 
|---|
| 101 | "Pseudo-divide a polynomial F by the list of polynomials FL. Return | 
|---|
| 102 | multiple values. The first value is a list of quotients A.  The second | 
|---|
| 103 | value is the remainder R. The third argument is a scalar coefficient | 
|---|
| 104 | C, such that C*F can be divided by FL within the ring of coefficients, | 
|---|
| 105 | which is not necessarily a field. Finally, the fourth value is an | 
|---|
| 106 | integer count of the number of reductions performed.  The resulting | 
|---|
| 107 | objects satisfy the equation: C*F= sum A[i]*FL[i] + R. The sugar of | 
|---|
| 108 | the quotients is initialized to default." | 
|---|
| 109 | (declare (type poly f) (list fl)) | 
|---|
| 110 | ;; Loop invariant: c*f=sum ai*fi+r+p, where p must eventually become 0 | 
|---|
| 111 | (do ((r (make-poly-zero)) | 
|---|
| 112 | (c (funcall (ring-unit ring))) | 
|---|
| 113 | (a (make-list (length fl) :initial-element (make-poly-zero))) | 
|---|
| 114 | (division-count 0) | 
|---|
| 115 | (p f)) | 
|---|
| 116 | ((poly-zerop p) | 
|---|
| 117 | #+grobner-check(check-loop-invariant ring-and-order c f a fl r p) | 
|---|
| 118 | (debug-cgb "~&~3T~d reduction~:p" division-count) | 
|---|
| 119 | (when (poly-zerop r) (debug-cgb " ---> 0")) | 
|---|
| 120 | ;; We obtained the terms in reverse order, so must fix that | 
|---|
| 121 | (setf a (mapcar #'poly-nreverse a) | 
|---|
| 122 | r (poly-nreverse r)) | 
|---|
| 123 | ;; Initialize the sugar of the quotients | 
|---|
| 124 | (mapc #'poly-reset-sugar a) | 
|---|
| 125 | (values a r c division-count)) | 
|---|
| 126 | (declare (fixnum division-count)) | 
|---|
| 127 | ;; Check the loop invariant here | 
|---|
| 128 | #+grobner-check(check-loop-invariant ring-and-order c f a fl r p) | 
|---|
| 129 | (do ((fl fl (rest fl))              ;scan list of divisors | 
|---|
| 130 | (b a (rest b))) | 
|---|
| 131 | ((cond | 
|---|
| 132 | ((endp fl)                           ;no division occurred | 
|---|
| 133 | (push (poly-lt p) (poly-termlist r)) ;move lt(p) to remainder | 
|---|
| 134 | (setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p)))) | 
|---|
| 135 | (pop (poly-termlist p))     ;remove lt(p) from p | 
|---|
| 136 | t) | 
|---|
| 137 | ((monom-divides-p (poly-lm (car fl)) (poly-lm p)) ;division occurred | 
|---|
| 138 | (incf division-count) | 
|---|
| 139 | (multiple-value-bind (gcd c1 c2) | 
|---|
| 140 | (funcall (ring-ezgcd ring) (poly-lc (car fl)) (poly-lc p)) | 
|---|
| 141 | (declare (ignore gcd)) | 
|---|
| 142 | (let ((m (monom-div (poly-lm p) (poly-lm (car fl))))) | 
|---|
| 143 | ;; Multiply the equation c*f=sum ai*fi+r+p by c1. | 
|---|
| 144 | (mapl #'(lambda (x) | 
|---|
| 145 | (setf (car x) (scalar-times-poly ring c1 (car x)))) | 
|---|
| 146 | a) | 
|---|
| 147 | (setf r (scalar-times-poly ring c1 r) | 
|---|
| 148 | c (funcall (ring-mul ring) c c1) | 
|---|
| 149 | p (grobner-op ring-and-order c2 c1 m p (car fl))) | 
|---|
| 150 | (push (make-term m c2) (poly-termlist (car b)))) | 
|---|
| 151 | t)))) | 
|---|
| 152 | ))) | 
|---|
| 153 |  | 
|---|
| 154 | (defun poly-exact-divide (ring-and-order f g) | 
|---|
| 155 | "Divide a polynomial F by another polynomial G. Assume that exact division | 
|---|
| 156 | with no remainder is possible. Returns the quotient." | 
|---|
| 157 | (declare (type poly f g) (type ring-and-order ring-and-order)) | 
|---|
| 158 | (multiple-value-bind (quot rem coeff division-count) | 
|---|
| 159 | (poly-pseudo-divide ring-and-order f (list g)) | 
|---|
| 160 | (declare (ignore division-count coeff) | 
|---|
| 161 | (list quot) | 
|---|
| 162 | (type poly rem) | 
|---|
| 163 | (type fixnum division-count)) | 
|---|
| 164 | (unless (poly-zerop rem) (error "Exact division failed.")) | 
|---|
| 165 | (car quot))) | 
|---|
| 166 |  | 
|---|
| 167 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 168 | ;; | 
|---|
| 169 | ;; An implementation of the normal form | 
|---|
| 170 | ;; | 
|---|
| 171 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 172 |  | 
|---|
| 173 | (defun normal-form-step (ring-and-order fl p r c division-count | 
|---|
| 174 | &aux | 
|---|
| 175 | (ring (ro-ring ring-and-order)) | 
|---|
| 176 | (g (find (poly-lm p) fl | 
|---|
| 177 | :test #'monom-divisible-by-p | 
|---|
| 178 | :key #'poly-lm))) | 
|---|
| 179 | (cond | 
|---|
| 180 | (g                                   ;division possible | 
|---|
| 181 | (incf division-count) | 
|---|
| 182 | (multiple-value-bind (gcd cg cp) | 
|---|
| 183 | (funcall (ring-ezgcd ring) (poly-lc g) (poly-lc p)) | 
|---|
| 184 | (declare (ignore gcd)) | 
|---|
| 185 | (let ((m (monom-div (poly-lm p) (poly-lm g)))) | 
|---|
| 186 | ;; Multiply the equation c*f=sum ai*fi+r+p by cg. | 
|---|
| 187 | (setf r (scalar-times-poly ring cg r) | 
|---|
| 188 | c (funcall (ring-mul ring) c cg) | 
|---|
| 189 | ;; p := cg*p-cp*m*g | 
|---|
| 190 | p (grobner-op ring-and-order cp cg m p g)))) | 
|---|
| 191 | (debug-cgb "/")) | 
|---|
| 192 | (t                                                   ;no division possible | 
|---|
| 193 | (push (poly-lt p) (poly-termlist r))                ;move lt(p) to remainder | 
|---|
| 194 | (setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p)))) | 
|---|
| 195 | (pop (poly-termlist p))                             ;remove lt(p) from p | 
|---|
| 196 | (debug-cgb "+"))) | 
|---|
| 197 | (values p r c division-count)) | 
|---|
| 198 |  | 
|---|
| 199 | ;; Merge it sometime with poly-pseudo-divide | 
|---|
| 200 | (defun normal-form (ring-and-order f fl | 
|---|
| 201 | &optional | 
|---|
| 202 | (top-reduction-only $poly_top_reduction_only) | 
|---|
| 203 | (ring (ro-ring ring-and-order))) | 
|---|
| 204 | #+grobner-check(when (null fl) (warn "normal-form: empty divisor list.")) | 
|---|
| 205 | (do ((r (make-poly-zero)) | 
|---|
| 206 | (c (funcall (ring-unit ring))) | 
|---|
| 207 | (division-count 0)) | 
|---|
| 208 | ((or (poly-zerop f) | 
|---|
| 209 | ;;(endp fl) | 
|---|
| 210 | (and top-reduction-only (not (poly-zerop r)))) | 
|---|
| 211 | (progn | 
|---|
| 212 | (debug-cgb "~&~3T~D reduction~:P" division-count) | 
|---|
| 213 | (when (poly-zerop r) | 
|---|
| 214 | (debug-cgb " ---> 0"))) | 
|---|
| 215 | (setf (poly-termlist f) (nreconc (poly-termlist r) (poly-termlist f))) | 
|---|
| 216 | (values f c division-count)) | 
|---|
| 217 | (declare (fixnum division-count) | 
|---|
| 218 | (type poly r)) | 
|---|
| 219 | (multiple-value-setq (f r c division-count) | 
|---|
| 220 | (normal-form-step ring-and-order fl f r c division-count)))) | 
|---|
| 221 |  | 
|---|
| 222 | (defun buchberger-criterion (ring-and-order g) | 
|---|
| 223 | "Returns T if G is a Grobner basis, by using the Buchberger | 
|---|
| 224 | criterion: for every two polynomials h1 and h2 in G the S-polynomial | 
|---|
| 225 | S(h1,h2) reduces to 0 modulo G." | 
|---|
| 226 | (every #'poly-zerop | 
|---|
| 227 | (makelist (normal-form ring-and-order (spoly ring-and-order (elt g i) (elt g j)) g nil) | 
|---|
| 228 | (i 0 (- (length g) 2)) | 
|---|
| 229 | (j (1+ i) (1- (length g)))))) | 
|---|
| 230 |  | 
|---|
| 231 |  | 
|---|
| 232 | (defun poly-normalize (ring p &aux (c (poly-lc p))) | 
|---|
| 233 | "Divide a polynomial by its leading coefficient. It assumes | 
|---|
| 234 | that the division is possible, which may not always be the | 
|---|
| 235 | case in rings which are not fields. The exact division operator | 
|---|
| 236 | is assumed to be provided by the RING structure." | 
|---|
| 237 | (mapc #'(lambda (term) | 
|---|
| 238 | (setf (term-coeff term) (funcall (ring-div ring) (term-coeff term) c))) | 
|---|
| 239 | (poly-termlist p)) | 
|---|
| 240 | p) | 
|---|
| 241 |  | 
|---|
| 242 | (defun poly-normalize-list (ring plist) | 
|---|
| 243 | "Divide every polynomial in a list PLIST by its leading coefficient. " | 
|---|
| 244 | (mapcar #'(lambda (x) (poly-normalize ring x)) plist)) | 
|---|