close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/division.lisp@ 1219

Last change on this file since 1219 was 1219, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 8.3 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "DIVISION"
23 (:use :cl :utils :ring :monomial :polynomial :grobner-debug :term :ring-and-order)
24 (:export "$POLY_TOP_REDUCTION_ONLY"
25 "POLY-PSEUDO-DIVIDE"
26 "POLY-EXACT-DIVIDE"
27 "NORMAL-FORM-STEP"
28 "NORMAL-FORM"
29 "POLY-NORMALIZE"
30 "POLY-NORMALIZE-LIST"
31 "BUCHBERGER-CRITERION"
32 ))
33
34(in-package :division)
35
36(defvar $poly_top_reduction_only nil
37 "If not FALSE, use top reduction only whenever possible.
38Top reduction means that division algorithm stops after the first reduction.")
39
40;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
41;;
42;; An implementation of the division algorithm
43;;
44;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
45
46(defun grobner-op (ring-and-order c1 c2 m f g
47 &aux
48 (ring (ro-ring ring-and-order)))
49 "Returns C2*F-C1*M*G, where F and G are polynomials M is a monomial.
50Assume that the leading terms will cancel."
51 (declare (type ring-and-order ring-and-order))
52 #+grobner-check(funcall (ring-zerop ring)
53 (funcall (ring-sub ring)
54 (funcall (ring-mul ring) c2 (poly-lc f))
55 (funcall (ring-mul ring) c1 (poly-lc g))))
56 #+grobner-check(monom-equal-p (poly-lm f) (monom-mul m (poly-lm g)))
57 ;; Note that below we can drop the leading terms of f ang g for the
58 ;; purpose of polynomial arithmetic.
59 ;;
60 ;; TODO: Make sure that the sugar calculation is correct if leading
61 ;; terms are dropped.
62 (poly-sub ring-and-order
63 (scalar-times-poly-1 ring c2 f)
64 (scalar-times-poly-1 ring c1 (monom-times-poly m g))))
65
66(defun poly-pseudo-divide (ring-and-order f fl
67 &aux
68 (ring (ro-ring ring-and-order)))
69 "Pseudo-divide a polynomial F by the list of polynomials FL. Return
70multiple values. The first value is a list of quotients A. The second
71value is the remainder R. The third argument is a scalar coefficient
72C, such that C*F can be divided by FL within the ring of coefficients,
73which is not necessarily a field. Finally, the fourth value is an
74integer count of the number of reductions performed. The resulting
75objects satisfy the equation: C*F= sum A[i]*FL[i] + R."
76 (declare (type poly f) (list fl))
77 (do ((r (make-poly-zero))
78 (c (funcall (ring-unit ring)))
79 (a (make-list (length fl) :initial-element (make-poly-zero)))
80 (division-count 0)
81 (p f))
82 ((poly-zerop p)
83 (debug-cgb "~&~3T~d reduction~:p" division-count)
84 (when (poly-zerop r) (debug-cgb " ---> 0"))
85 ;; We obtained the terms in reverse order, so must fix that
86 (setf a (mapcar #'poly-nreverse a)
87 r (poly-nreverse r))
88 ;; Initialize the sugar of the quotients
89 (mapc #'poly-reset-sugar a)
90 (values a r c division-count))
91 (declare (fixnum division-count))
92 (do ((fl fl (rest fl)) ;scan list of divisors
93 (b a (rest b)))
94 ((cond
95 ((endp fl) ;no division occurred
96 (push (poly-lt p) (poly-termlist r)) ;move lt(p) to remainder
97 (setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
98 (pop (poly-termlist p)) ;remove lt(p) from p
99 t)
100 ((monom-divides-p (poly-lm (car fl)) (poly-lm p)) ;division occurred
101 (incf division-count)
102 (multiple-value-bind (gcd c1 c2)
103 (funcall (ring-ezgcd ring) (poly-lc (car fl)) (poly-lc p))
104 (declare (ignore gcd))
105 (let ((m (monom-div (poly-lm p) (poly-lm (car fl)))))
106 ;; Multiply the equation c*f=sum ai*fi+r+p by c1.
107 (mapl #'(lambda (x)
108 (setf (car x) (scalar-times-poly ring c1 (car x))))
109 a)
110 (setf r (scalar-times-poly ring c1 r)
111 c (funcall (ring-mul ring) c c1)
112 p (grobner-op ring-and-order c2 c1 m p (car fl)))
113 (push (make-term m c2) (poly-termlist (car b))))
114 t)))))))
115
116(defun poly-exact-divide (ring f g)
117 "Divide a polynomial F by another polynomial G. Assume that exact division
118with no remainder is possible. Returns the quotient."
119 (declare (type poly f g))
120 (multiple-value-bind (quot rem coeff division-count)
121 (poly-pseudo-divide ring f (list g))
122 (declare (ignore division-count coeff)
123 (list quot)
124 (type poly rem)
125 (type fixnum division-count))
126 (unless (poly-zerop rem) (error "Exact division failed."))
127 (car quot)))
128
129
130
131;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
132;;
133;; An implementation of the normal form
134;;
135;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
136
137(defun normal-form-step (ring-and-order fl p r c division-count
138 &aux
139 (ring (ro-ring ring-and-order))
140 (g (find (poly-lm p) fl
141 :test #'monom-divisible-by-p
142 :key #'poly-lm)))
143 (cond
144 (g ;division possible
145 (incf division-count)
146 (multiple-value-bind (gcd cg cp)
147 (funcall (ring-ezgcd ring) (poly-lc g) (poly-lc p))
148 (declare (ignore gcd))
149 (let ((m (monom-div (poly-lm p) (poly-lm g))))
150 ;; Multiply the equation c*f=sum ai*fi+r+p by cg.
151 (setf r (scalar-times-poly ring cg r)
152 c (funcall (ring-mul ring) c cg)
153 ;; p := cg*p-cp*m*g
154 p (grobner-op ring-and-order cp cg m p g))))
155 (debug-cgb "/"))
156 (t ;no division possible
157 (push (poly-lt p) (poly-termlist r)) ;move lt(p) to remainder
158 (setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
159 (pop (poly-termlist p)) ;remove lt(p) from p
160 (debug-cgb "+")))
161 (values p r c division-count))
162
163;; Merge it sometime with poly-pseudo-divide
164(defun normal-form (ring-and-order f fl
165 &optional
166 (top-reduction-only $poly_top_reduction_only)
167 (ring (ro-ring ring-and-order)))
168 ;; Loop invariant: c*f0=sum ai*fi+r+f, where f0 is the initial value of f
169 #+grobner-check(when (null fl) (warn "normal-form: empty divisor list."))
170 (do ((r (make-poly-zero))
171 (c (funcall (ring-unit ring)))
172 (division-count 0))
173 ((or (poly-zerop f)
174 ;;(endp fl)
175 (and top-reduction-only (not (poly-zerop r))))
176 (progn
177 (debug-cgb "~&~3T~d reduction~:p" division-count)
178 (when (poly-zerop r)
179 (debug-cgb " ---> 0")))
180 (setf (poly-termlist f) (nreconc (poly-termlist r) (poly-termlist f)))
181 (values f c division-count))
182 (declare (fixnum division-count)
183 (type poly r))
184 (multiple-value-setq (f r c division-count)
185 (normal-form-step ring-and-order fl f r c division-count))))
186
187(defun buchberger-criterion (ring-and-order g)
188 "Returns T if G is a Grobner basis, by using the Buchberger
189criterion: for every two polynomials h1 and h2 in G the S-polynomial
190S(h1,h2) reduces to 0 modulo G."
191 (every
192 #'poly-zerop
193 (makelist (normal-form ring-and-order (spoly ring-and-order (elt g i) (elt g j)) g nil)
194 (i 0 (- (length g) 2))
195 (j (1+ i) (1- (length g))))))
196
197
198(defun poly-normalize (ring p &aux (c (poly-lc p)))
199 "Divide a polynomial by its leading coefficient. It assumes
200that the division is possible, which may not always be the
201case in rings which are not fields. The exact division operator
202is assumed to be provided by the RING structure."
203 (mapc #'(lambda (term)
204 (setf (term-coeff term) (funcall (ring-div ring) (term-coeff term) c)))
205 (poly-termlist p))
206 p)
207
208(defun poly-normalize-list (ring plist)
209 "Divide every polynomial in a list PLIST by its leading coefficient. "
210 (mapcar #'(lambda (x) (poly-normalize ring x)) plist))
Note: See TracBrowser for help on using the repository browser.